Goto

Collaborating Authors

 de Carvalho, Gonçalo Hora


AI-driven control of bioelectric signalling for real-time topological reorganization of cells

arXiv.org Artificial Intelligence

Understanding and manipulating bioelectric signaling could present a new wave of progress in developmental biology, regenerative medicine, and synthetic biology. Bioelectric signals, defined as voltage gradients across cell membranes caused by ionic movements, play a role in regulating crucial processes including cellular differentiation, proliferation, apoptosis, and tissue morphogenesis. Recent studies demonstrate the ability to modulate these signals to achieve controlled tissue regeneration and morphological outcomes in organisms such as planaria and frogs. However, significant knowledge gaps remain, particularly in predicting and controlling the spatial and temporal dynamics of membrane potentials (V_mem), understanding their regulatory roles in tissue and organ development, and exploring their therapeutic potential in diseases. In this work we propose an experiment using Deep Reinforcement Learning (DRL) framework together with lab automation techniques for real-time manipulation of bioelectric signals to guide tissue regeneration and morphogenesis. The proposed framework should interact continuously with biological systems, adapting strategies based on direct biological feedback. Combining DRL with real-time measurement techniques -- such as optogenetics, voltage-sensitive dyes, fluorescent reporters, and advanced microscopy -- could provide a comprehensive platform for precise bioelectric control, leading to improved understanding of bioelectric mechanisms in morphogenesis, quantitative bioelectric models, identification of minimal experimental setups, and advancements in bioelectric modulation techniques relevant to regenerative medicine and cancer therapy. Ultimately, this research aims to utilize bioelectric signaling to develop new biomedical and bioengineering applications.


Show, Don't Tell: Evaluating Large Language Models Beyond Textual Understanding with ChildPlay

arXiv.org Artificial Intelligence

We explore the hypothesis that LLMs, such as GPT-3.5 and GPT-4, possess broader cognitive functions, particularly in non-linguistic domains. Our approach extends beyond standard linguistic benchmarks by incorporating games like Tic-Tac-Toe, Connect Four, and Battleship, encoded via ASCII, to assess strategic thinking and decision-making. To evaluate the models' ability to generalize beyond their training data, we introduce two additional games. The first game, LEGO Connect Language (LCL), tests the models' capacity to understand spatial logic and follow assembly instructions. The second game, the game of shapes, challenges the models to identify shapes represented by 1s within a matrix of zeros, further testing their spatial reasoning skills. This "show, don't tell" strategy uses games instead of simply querying the models. Our results show that despite their proficiency on standard benchmarks, GPT-3.5 and GPT-4's abilities to play and reason about fully observable games without pre-training is mediocre. Both models fail to anticipate losing moves in Tic-Tac-Toe and Connect Four, and they are unable to play Battleship correctly. While GPT-4 shows some success in the game of shapes, both models fail at the assembly tasks presented in the LCL game. These results suggest that while GPT models can emulate conversational proficiency and basic rule comprehension, their performance in strategic gameplay and spatial reasoning tasks is very limited. Importantly, this reveals a blind spot in current LLM benchmarks that we highlight with our gameplay benchmark suite ChildPlay (https://github.com/child-play-neurips/child-play). Our findings provide a cautionary tale about claims of emergent intelligence and reasoning capabilities of LLMs that are roughly the size of GPT-3.5 and GPT-4.