Goto

Collaborating Authors

 de Bezenac, Emmanuel


Learning a Neural Solver for Parametric PDE to Enhance Physics-Informed Methods

arXiv.org Artificial Intelligence

Physics-informed deep learning often faces optimization challenges due to the complexity of solving partial differential equations (PDEs), which involve exploring large solution spaces, require numerous iterations, and can lead to unstable training. These challenges arise particularly from the ill-conditioning of the optimization problem, caused by the differential terms in the loss function. To address these issues, we propose learning a solver, i.e., solving PDEs using a physics-informed iterative algorithm trained on data. Our method learns to condition a gradient descent algorithm that automatically adapts to each PDE instance, significantly accelerating and stabilizing the optimization process and enabling faster convergence of physics-aware models. Furthermore, while traditional physics-informed methods solve for a single PDE instance, our approach addresses parametric PDEs. Specifically, our method integrates the physical loss gradient with the PDE parameters to solve over a distribution of PDE parameters, including coefficients, initial conditions, or boundary conditions. We demonstrate the effectiveness of our method through empirical experiments on multiple datasets, comparing training and test-time optimization performance.


A Structured Matrix Method for Nonequispaced Neural Operators

arXiv.org Artificial Intelligence

The computational efficiency of many neural operators, widely used for learning solutions of PDEs, relies on the fast Fourier transform (FFT) for performing spectral computations. However, as FFT is limited to equispaced (rectangular) grids, this limits the efficiency of such neural operators when applied to problems where the input and output functions need to be processed on general non-equispaced point distributions. We address this issue by proposing a novel method that leverages batch matrix multiplications to efficiently construct Vandermonde-structured matrices and compute forward and inverse transforms, on arbitrarily distributed points. An efficient implementation of such structured matrix methods is coupled with existing neural operator models to allow the processing of data on arbitrary non-equispaced distributions of points. With extensive empirical evaluation, we demonstrate that the proposed method allows one to extend neural operators to very general point distributions with significant gains in training speed over baselines, while retaining or improving accuracy.


Deep Learning for Physical Processes: Incorporating Prior Scientific Knowledge

arXiv.org Machine Learning

We consider the use of Deep Learning methods for modeling complex phenomena like those occurring in natural physical processes. With the large amount of data gathered on these phenomena the data intensive paradigm could begin to challenge more traditional approaches elaborated over the years in fields like maths or physics. However, despite considerable successes in a variety of application domains, the machine learning field is not yet ready to handle the level of complexity required by such problems. Using an example application, namely Sea Surface Temperature Prediction, we show how general background knowledge gained from physics could be used as a guideline for designing efficient Deep Learning models. In order to motivate the approach and to assess its generality we demonstrate a formal link between the solution of a class of differential equations underlying a large family of physical phenomena and the proposed model. Experiments and comparison with series of baselines including a state of the art numerical approach is then provided.