d'Addato, Giulia
Socially-Aware Opinion-Based Navigation with Oval Limit Cycles
d'Addato, Giulia, Falqueto, Placido, Palopoli, Luigi, Fontanelli, Daniele
When humans move in a shared space, they choose navigation strategies that preserve their mutual safety. At the same time, each human seeks to minimise the number of modifications to her/his path. In order to achieve this result, humans use unwritten rules and reach a consensus on their decisions about the motion direction by exchanging non-verbal messages. They then implement their choice in a mutually acceptable way. Socially-aware navigation denotes a research effort aimed at replicating this logic inside robots. Existing results focus either on how robots can participate in negotiations with humans, or on how they can move in a socially acceptable way. We propose a holistic approach in which the two aspects are jointly considered. Specifically, we show that by combining opinion dynamics (to reach a consensus) with vortex fields (to generate socially acceptable trajectories), the result outperforms the application of the two techniques in isolation.
Joint torques prediction of a robotic arm using neural networks
d'Addato, Giulia, Carli, Ruggero, Pedrosa, Eurico, Pereira, Artur, Palopoli, Luigi, Fontanelli, Daniele
Accurate dynamic models are crucial for many robotic applications. Traditional approaches to deriving these models are based on the application of Lagrangian or Newtonian mechanics. Although these methods provide a good insight into the physical behaviour of the system, they rely on the exact knowledge of parameters such as inertia, friction and joint flexibility. In addition, the system is often affected by uncertain and nonlinear effects, such as saturation and dead zones, which can be difficult to model. A popular alternative is the application of Machine Learning (ML) techniques - e.g., Neural Networks (NNs) - in the context of a "black-box" methodology. This paper reports on our experience with this approach for a real-life 6 degrees of freedom (DoF) manipulator. Specifically, we considered several NN architectures: single NN, multiple NNs, and cascade NN. We compared the performance of the system by using different policies for selecting the NN hyperparameters. Our experiments reveal that the best accuracy and performance are obtained by a cascade NN, in which we encode our prior physical knowledge about the dependencies between joints, complemented by an appropriate optimisation of the hyperparameters.