braverman, Vladimir
The Physical Systems Behind Optimization Algorithms
Yang, Lin, Arora, Raman, braverman, Vladimir, Zhao, Tuo
We use differential equations based approaches to provide some {\it \textbf{physics}} insights into analyzing the dynamics of popular optimization algorithms in machine learning. In particular, we study gradient descent, proximal gradient descent, coordinate gradient descent, proximal coordinate gradient, and Newton's methods as well as their Nesterov's accelerated variants in a unified framework motivated by a natural connection of optimization algorithms to physical systems. Our analysis is applicable to more general algorithms and optimization problems {\it \textbf{beyond}} convexity and strong convexity, e.g. Polyak-\L ojasiewicz and error bound conditions (possibly nonconvex).
Differentially Private Robust Low-Rank Approximation
Arora, Raman, braverman, Vladimir, Upadhyay, Jalaj
In this paper, we study the following robust low-rank matrix approximation problem: given a matrix $A \in \R^{n \times d}$, find a rank-$k$ matrix $B$, while satisfying differential privacy, such that $ \norm{ A - B }_p \leq \alpha \mathsf{OPT}_k(A) + \tau,$ where $\norm{ M }_p$ is the entry-wise $\ell_p$-norm and $\mathsf{OPT}_k(A):=\min_{\mathsf{rank}(X) \leq k} \norm{ A - X}_p$. It is well known that low-rank approximation w.r.t. entrywise $\ell_p$-norm, for $p \in [1,2)$, yields robustness to gross outliers in the data. We propose an algorithm that guarantees $\alpha=\widetilde{O}(k^2), \tau=\widetilde{O}(k^2(n+kd)/\varepsilon)$, runs in $\widetilde O((n+d)\poly~k)$ time and uses $O(k(n+d)\log k)$ space. We study extensions to the streaming setting where entries of the matrix arrive in an arbitrary order and output is produced at the very end or continually. We also study the related problem of differentially private robust principal component analysis (PCA), wherein we return a rank-$k$ projection matrix $\Pi$ such that $\norm{ A - A \Pi }_p \leq \alpha \mathsf{OPT}_k(A) + \tau.$
Differentially Private Robust Low-Rank Approximation
Arora, Raman, braverman, Vladimir, Upadhyay, Jalaj
In this paper, we study the following robust low-rank matrix approximation problem: given a matrix $A \in \R^{n \times d}$, find a rank-$k$ matrix $B$, while satisfying differential privacy, such that $ \norm{ A - B }_p \leq \alpha \mathsf{OPT}_k(A) + \tau,$ where $\norm{ M }_p$ is the entry-wise $\ell_p$-norm and $\mathsf{OPT}_k(A):=\min_{\mathsf{rank}(X) \leq k} \norm{ A - X}_p$. It is well known that low-rank approximation w.r.t. entrywise $\ell_p$-norm, for $p \in [1,2)$, yields robustness to gross outliers in the data. We propose an algorithm that guarantees $\alpha=\widetilde{O}(k^2), \tau=\widetilde{O}(k^2(n+kd)/\varepsilon)$, runs in $\widetilde O((n+d)\poly~k)$ time and uses $O(k(n+d)\log k)$ space. We study extensions to the streaming setting where entries of the matrix arrive in an arbitrary order and output is produced at the very end or continually. We also study the related problem of differentially private robust principal component analysis (PCA), wherein we return a rank-$k$ projection matrix $\Pi$ such that $\norm{ A - A \Pi }_p \leq \alpha \mathsf{OPT}_k(A) + \tau.$
The Physical Systems Behind Optimization Algorithms
Yang, Lin, Arora, Raman, braverman, Vladimir, Zhao, Tuo
We use differential equations based approaches to provide some {\it \textbf{physics}} insights into analyzing the dynamics of popular optimization algorithms in machine learning. In particular, we study gradient descent, proximal gradient descent, coordinate gradient descent, proximal coordinate gradient, and Newton's methods as well as their Nesterov's accelerated variants in a unified framework motivated by a natural connection of optimization algorithms to physical systems. Our analysis is applicable to more general algorithms and optimization problems {\it \textbf{beyond}} convexity and strong convexity, e.g. Polyak-\L ojasiewicz and error bound conditions (possibly nonconvex).