Zou, Xin
Capturing Nuanced Preferences: Preference-Aligned Distillation for Small Language Models
Gu, Yanggan, Li, Junzhuo, Huang, Sirui, Zou, Xin, Li, Zhenghua, Hu, Xuming
Aligning small language models (SLMs) with human values typically involves distilling preference knowledge from large language models (LLMs). However, existing distillation methods model preference knowledge in teacher LLMs by comparing pairwise responses, overlooking the extent of difference between responses. This limitation hinders student SLMs from capturing the nuanced preferences for multiple responses. In this paper, we propose a Preference-Aligned Distillation (PAD) framework, which models teacher's preference knowledge as a probability distribution over all potential preferences, thereby providing more nuanced supervisory signals. Our insight in developing PAD is rooted in the demonstration that language models can serve as reward functions, reflecting their intrinsic preferences. Based on this, PAD comprises three key steps: (1) sampling diverse responses using high-temperature; (2) computing rewards for both teacher and student to construct their intrinsic preference; and (3) training the student's intrinsic preference distribution to align with the teacher's. Experiments on four mainstream alignment benchmarks demonstrate that PAD consistently and significantly outperforms existing approaches, achieving over 20\% improvement on AlpacaEval 2 and Arena-Hard, indicating superior alignment with human preferences. Notably, on MT-Bench, using the \textsc{Gemma} model family, the student trained by PAD surpasses its teacher, further validating the effectiveness of our PAD.
MMUNLEARNER: Reformulating Multimodal Machine Unlearning in the Era of Multimodal Large Language Models
Huo, Jiahao, Yan, Yibo, Zheng, Xu, Lyu, Yuanhuiyi, Zou, Xin, Wei, Zhihua, Hu, Xuming
Recent progress in Machine Unlearning (MU) has introduced solutions for the selective removal of private or sensitive information encoded within deep neural networks. Nonetheless, MU for Multimodal Large Language Models (MLLMs) remains in its nascent phase. Therefore, we propose to reformulate the task of multimodal MU in the era of MLLMs, which aims to erase only the visual patterns associated with a given entity while preserving the corresponding textual knowledge encoded within the original parameters of the language model backbone. Furthermore, we develop a novel geometry-constrained gradient descent method MMUnlearner. It updates the weights of MLLMs with a weight saliency map jointly restricted by the remaining concepts and textual knowledge during unlearning, thereby preserving parameters essential for non-target knowledge. Extensive experiments demonstrate that MMUnlearner surpasses baselines that finetuning MLLMs with VQA data directly through Gradient Ascent (GA) or Negative Preference Optimization (NPO), across all evaluation dimensions. Our code will be released upon acceptance.
Exploring Response Uncertainty in MLLMs: An Empirical Evaluation under Misleading Scenarios
Dang, Yunkai, Gao, Mengxi, Yan, Yibo, Zou, Xin, Gu, Yanggan, Liu, Aiwei, Hu, Xuming
Ensuring that Multimodal Large Language Models (MLLMs) maintain consistency in their responses is essential for developing trustworthy multimodal intelligence. However, existing benchmarks include many samples where all MLLMs exhibit high response uncertainty when encountering misleading information, requiring even 5-15 response attempts per sample to effectively assess uncertainty. Therefore, we propose a two-stage pipeline: first, we collect MLLMs' responses without misleading information, and then gather misleading ones via specific misleading instructions. Eventually, we establish a Multimodal Uncertainty Benchmark (MUB) that employs both explicit and implicit misleading instructions to comprehensively assess the vulnerability of MLLMs across diverse domains. Our experiments reveal that all opensource and close-source MLLMs are highly susceptible to misleading instructions, with an average misleading rate exceeding 86%. To enhance the robustness of MLLMs, we further fine-tune all ...
Coverage-Guaranteed Prediction Sets for Out-of-Distribution Data
Zou, Xin, Liu, Weiwei
Out-of-distribution (OOD) generalization has attracted increasing research attention in recent years, due to its promising experimental results in real-world applications. In this paper,we study the confidence set prediction problem in the OOD generalization setting. Split conformal prediction (SCP) is an efficient framework for handling the confidence set prediction problem. However, the validity of SCP requires the examples to be exchangeable, which is violated in the OOD setting. Empirically, we show that trivially applying SCP results in a failure to maintain the marginal coverage when the unseen target domain is different from the source domain. To address this issue, we develop a method for forming confident prediction sets in the OOD setting and theoretically prove the validity of our method. Finally, we conduct experiments on simulated data to empirically verify the correctness of our theory and the validity of our proposed method.
Generalization Bounds for Adversarial Contrastive Learning
Zou, Xin, Liu, Weiwei
Deep networks are well-known to be fragile to adversarial attacks, and adversarial training is one of the most popular methods used to train a robust model. To take advantage of unlabeled data, recent works have applied adversarial training to contrastive learning (Adversarial Contrastive Learning; ACL for short) and obtain promising robust performance. However, the theory of ACL is not well understood. To fill this gap, we leverage the Rademacher complexity to analyze the generalization performance of ACL, with a particular focus on linear models and multi-layer neural networks under $\ell_p$ attack ($p \ge 1$). Our theory shows that the average adversarial risk of the downstream tasks can be upper bounded by the adversarial unsupervised risk of the upstream task. The experimental results validate our theory.