Zou, Beiji
Active Learning in Brain Tumor Segmentation with Uncertainty Sampling, Annotation Redundancy Restriction, and Data Initialization
Kim, Daniel D, Chandra, Rajat S, Peng, Jian, Wu, Jing, Feng, Xue, Atalay, Michael, Bettegowda, Chetan, Jones, Craig, Sair, Haris, Liao, Wei-hua, Zhu, Chengzhang, Zou, Beiji, Yang, Li, Kazerooni, Anahita Fathi, Nabavizadeh, Ali, Bai, Harrison X, Jiao, Zhicheng
Deep learning models have demonstrated great potential in medical 3D imaging, but their development is limited by the expensive, large volume of annotated data required. Active learning (AL) addresses this by training a model on a subset of the most informative data samples without compromising performance. We compared different AL strategies and propose a framework that minimizes the amount of data needed for state-of-the-art performance. 638 multi-institutional brain tumor MRI images were used to train a 3D U-net model and compare AL strategies. We investigated uncertainty sampling, annotation redundancy restriction, and initial dataset selection techniques. Uncertainty estimation techniques including Bayesian estimation with dropout, bootstrapping, and margins sampling were compared to random query. Strategies to avoid annotation redundancy by removing similar images within the to-be-annotated subset were considered as well. We determined the minimum amount of data necessary to achieve similar performance to the model trained on the full dataset ({\alpha} = 0.1). A variance-based selection strategy using radiomics to identify the initial training dataset is also proposed. Bayesian approximation with dropout at training and testing showed similar results to that of the full data model with less than 20% of the training data (p=0.293) compared to random query achieving similar performance at 56.5% of the training data (p=0.814). Annotation redundancy restriction techniques achieved state-of-the-art performance at approximately 40%-50% of the training data. Radiomics dataset initialization had higher Dice with initial dataset sizes of 20 and 80 images, but improvements were not significant. In conclusion, we investigated various AL strategies with dropout uncertainty estimation achieving state-of-the-art performance with the least annotated data.
Multi-task GLOH feature selection for human age estimation
Liang, Yixiong, Liu, Lingbo, Xu, Ying, Xiang, Yao, Zou, Beiji
In this paper, we propose a novel age estimation method based on GLOH feature descriptor and multi-task learning (MTL). The GLOH feature descriptor, one of the state-of-the-art feature descriptor, is used to capture the age-related local and spatial information of face image. As the exacted GLOH features are often redundant, MTL is designed to select the most informative feature bins for age estimation problem, while the corresponding weights are determined by ridge regression. This approach largely reduces the dimensions of feature, which can not only improve performance but also decrease the computational burden. Experiments on the public available FG-NET database show that the proposed method can achieve comparable performance over previous approaches while using much fewer features.
Feature Selection via Sparse Approximation for Face Recognition
Liang, Yixiong, Wang, Lei, Xiang, Yao, Zou, Beiji
Inspired by biological vision systems, the over-complete local features with huge cardinality are increasingly used for face recognition during the last decades. Accordingly, feature selection has become more and more important and plays a critical role for face data description and recognition. In this paper, we propose a trainable feature selection algorithm based on the regularized frame for face recognition. By enforcing a sparsity penalty term on the minimum squared error (MSE) criterion, we cast the feature selection problem into a combinatorial sparse approximation problem, which can be solved by greedy methods or convex relaxation methods. Moreover, based on the same frame, we propose a sparse Ho-Kashyap (HK) procedure to obtain simultaneously the optimal sparse solution and the corresponding margin vector of the MSE criterion. The proposed methods are used for selecting the most informative Gabor features of face images for recognition and the experimental results on benchmark face databases demonstrate the effectiveness of the proposed methods.