Goto

Collaborating Authors

 Zong, Shi


Categorical Syllogisms Revisited: A Review of the Logical Reasoning Abilities of LLMs for Analyzing Categorical Syllogism

arXiv.org Artificial Intelligence

There have been a huge number of benchmarks proposed to evaluate how large language models (LLMs) behave for logic inference tasks. However, it remains an open question how to properly evaluate this ability. In this paper, we provide a systematic overview of prior works on the logical reasoning ability of LLMs for analyzing categorical syllogisms. We first investigate all the possible variations for the categorical syllogisms from a purely logical perspective and then examine the underlying configurations (i.e., mood and figure) tested by the existing datasets. Our results indicate that compared to template-based synthetic datasets, crowdsourcing approaches normally sacrifice the coverage of configurations (i.e., mood and figure) of categorical syllogisms for more language variations, thus bringing challenges to fully testing LLMs under different situations. We then proceed to summarize the findings and observations for the performances of LLMs to infer the validity of syllogisms from the current literature. The error rate breakdown analyses suggest that the interpretation of the quantifiers seems to be the current bottleneck that limits the performances of the LLMs and is thus worth more attention. Finally, we discuss several points that might be worth considering when researchers plan on the future release of categorical syllogism datasets. We hope our work will not only provide a timely review of the current literature regarding categorical syllogisms, but also motivate more interdisciplinary research between communities, specifically computational linguists and logicians.


ADS-Cap: A Framework for Accurate and Diverse Stylized Captioning with Unpaired Stylistic Corpora

arXiv.org Artificial Intelligence

Generating visually grounded image captions with specific linguistic styles using unpaired stylistic corpora is a challenging task, especially since we expect stylized captions with a wide variety of stylistic patterns. In this paper, we propose a novel framework to generate Accurate and Diverse Stylized Captions (ADS-Cap). Our ADS-Cap first uses a contrastive learning module to align the image and text features, which unifies paired factual and unpaired stylistic corpora during the training process. A conditional variational auto-encoder is then used to automatically memorize diverse stylistic patterns in latent space and enhance diversity through sampling. We also design a simple but effective recheck module to boost style accuracy by filtering style-specific captions. Experimental results on two widely used stylized image captioning datasets show that regarding consistency with the image, style accuracy and diversity, ADS-Cap achieves outstanding performances compared to various baselines. We finally conduct extensive analyses to understand the effectiveness of our method.


$SmartProbe$: A Virtual Moderator for Market Research Surveys

arXiv.org Artificial Intelligence

Market research surveys are a powerful methodology for understanding consumer perspectives at scale, but are limited by depth of understanding and insights. A virtual moderator can introduce elements of qualitative research into surveys, developing a rapport with survey participants and dynamically asking probing questions, ultimately to elicit more useful information for market researchers. In this work, we introduce ${\tt SmartProbe}$, an API which leverages the adaptive capabilities of large language models (LLMs), and incorporates domain knowledge from market research, in order to generate effective probing questions in any market research survey. We outline the modular processing flow of $\tt SmartProbe$, and evaluate the quality and effectiveness of its generated probing questions. We believe our efforts will inspire industry practitioners to build real-world applications based on the latest advances in LLMs. Our demo is publicly available at https://nexxt.in/smartprobe-demo


Music-to-Text Synaesthesia: Generating Descriptive Text from Music Recordings

arXiv.org Artificial Intelligence

In this paper, we consider a novel research problem: music-to-text synaesthesia. Different from the classical music tagging problem that classifies a music recording into pre-defined categories, music-to-text synaesthesia aims to generate descriptive texts from music recordings with the same sentiment for further understanding. As existing music-related datasets do not contain the semantic descriptions on music recordings, we collect a new dataset that contains 1,955 aligned pairs of classical music recordings and text descriptions. Based on this, we build a computational model to generate sentences that can describe the content of the music recording. To tackle the highly non-discriminative classical music, we design a group topology-preservation loss, which considers more samples as a group reference and preserves the relative topology among different samples. Extensive experimental results qualitatively and quantitatively demonstrate the effectiveness of our proposed model over five heuristics or pre-trained competitive methods and their variants on our collected dataset.


Which Model Shall I Choose? Cost/Quality Trade-offs for Text Classification Tasks

arXiv.org Artificial Intelligence

Industry practitioners always face the problem of choosing the appropriate model for deployment under different considerations, such as to maximize a metric that is crucial for production, or to reduce the total cost given financial concerns. In this work, we focus on the text classification task and present a quantitative analysis for this challenge. Using classification accuracy as the main metric, we evaluate the classifiers' performances for a variety of models, including large language models, along with their associated costs, including the annotation cost, training (fine-tuning) cost, and inference cost. We then discuss the model choices for situations like having a large number of samples needed for inference. We hope our work will help people better understand the cost/quality trade-offs for the text classification task.


Cascading Bandits for Large-Scale Recommendation Problems

arXiv.org Machine Learning

Most recommender systems recommend a list of items. The user examines the list, from the first item to the last, and often chooses the first attractive item and does not examine the rest. This type of user behavior can be modeled by the cascade model. In this work, we study cascading bandits, an online learning variant of the cascade model where the goal is to recommend $K$ most attractive items from a large set of $L$ candidate items. We propose two algorithms for solving this problem, which are based on the idea of linear generalization. The key idea in our solutions is that we learn a predictor of the attraction probabilities of items from their features, as opposing to learning the attraction probability of each item independently as in the existing work. This results in practical learning algorithms whose regret does not depend on the number of items $L$. We bound the regret of one algorithm and comprehensively evaluate the other on a range of recommendation problems. The algorithm performs well and outperforms all baselines.