Goto

Collaborating Authors

 Zong, Linlin


Hawkes based Representation Learning for Reasoning over Scale-free Community-structured Temporal Knowledge Graphs

arXiv.org Artificial Intelligence

Temporal knowledge graph (TKG) reasoning has become a hot topic due to its great value in many practical tasks. The key to TKG reasoning is modeling the structural information and evolutional patterns of the TKGs. While great efforts have been devoted to TKG reasoning, the structural and evolutional characteristics of real-world networks have not been considered. In the aspect of structure, real-world networks usually exhibit clear community structure and scale-free (long-tailed distribution) properties. In the aspect of evolution, the impact of an event decays with the time elapsing. In this paper, we propose a novel TKG reasoning model called Hawkes process-based Evolutional Representation Learning Network (HERLN), which learns structural information and evolutional patterns of a TKG simultaneously, considering the characteristics of real-world networks: community structure, scale-free and temporal decaying. First, we find communities in the input TKG to make the encoding get more similar intra-community embeddings. Second, we design a Hawkes process-based relational graph convolutional network to cope with the event impact-decaying phenomenon. Third, we design a conditional decoding method to alleviate biases towards frequent entities caused by long-tailed distribution. Experimental results show that HERLN achieves significant improvements over the state-of-the-art models.


Hate Speech Detection via Dual Contrastive Learning

arXiv.org Artificial Intelligence

The fast spread of hate speech on social media impacts the Internet environment and our society by increasing prejudice and hurting people. Detecting hate speech has aroused broad attention in the field of natural language processing. Although hate speech detection has been addressed in recent work, this task still faces two inherent unsolved challenges. The first challenge lies in the complex semantic information conveyed in hate speech, particularly the interference of insulting words in hate speech detection. The second challenge is the imbalanced distribution of hate speech and non-hate speech, which may significantly deteriorate the performance of models. To tackle these challenges, we propose a novel dual contrastive learning (DCL) framework for hate speech detection. Our framework jointly optimizes the self-supervised and the supervised contrastive learning loss for capturing span-level information beyond the token-level emotional semantics used in existing models, particularly detecting speech containing abusive and insulting words. Moreover, we integrate the focal loss into the dual contrastive learning framework to alleviate the problem of data imbalance. We conduct experiments on two publicly available English datasets, and experimental results show that the proposed model outperforms the state-of-the-art models and precisely detects hate speeches.


Spectral Perturbation Meets Incomplete Multi-view Data

arXiv.org Artificial Intelligence

Beyond existing multi-view clustering, this paper studies a more realistic clustering scenario, referred to as incomplete multi-view clustering, where a number of data instances are missing in certain views. To tackle this problem, we explore spectral perturbation theory. In this work, we show a strong link between perturbation risk bounds and incomplete multi-view clustering. That is, as the similarity matrix fed into spectral clustering is a quantity bounded in magnitude O(1), we transfer the missing problem from data to similarity and tailor a matrix completion method for incomplete similarity matrix. Moreover, we show that the minimization of perturbation risk bounds among different views maximizes the final fusion result across all views. This provides a solid fusion criteria for multi-view data. We motivate and propose a Perturbation-oriented Incomplete multi-view Clustering (PIC) method. Experimental results demonstrate the effectiveness of the proposed method.


Weighted Multi-View Spectral Clustering Based on Spectral Perturbation

AAAI Conferences

Considering the diversity of the views, assigning the multiviews with different weights is important to multi-view clustering. Several multi-view clustering algorithms have been proposed to assign different weights to the views. However, the existing weighting schemes do not simultaneously consider the characteristic of multi-view clustering and the characteristic of related single-view clustering. In this paper, based on the spectral perturbation theory of spectral clustering, we propose a weighted multi-view spectral clustering algorithm which employs the spectral perturbation to model the weights of the views. The proposed weighting scheme follows the two basic principles: 1) the clustering results on each view should be close to the consensus clustering result, and 2) views with similar clustering results should be assigned similar weights. According to spectral perturbation theory, the largest canonical angle is used to measure the difference between spectral clustering results. In this way, the weighting scheme can be formulated into a standard quadratic programming problem. Experimental results demonstrate the superiority of the proposed algorithm.


Constrained NMF-Based Multi-View Clustering on Unmapped Data

AAAI Conferences

We use the disagreement between the Multi-view clustering gains increasing attention in the past views to guide the factorization of the matrices. The overall decade (Bickel and Scheffer 2004) (Kumar and III 2011) objective of our algorithm is to minimize the loss function of (Kumar, Rai, and III 2011) (Liu et al. 2013) (Blaschko and NMF in each view as well as the disagreement between each Lampert 2008) (Chaudhuri et al. 2009) (Tzortzis and Likas pair of views. Experimental results show that, with a small 2012). Most existing multi-view clustering algorithms require number of constraints, the proposed CMVNMF (Constrained that the data is completely mapped, i.e., every object Multi-View clustering based on NMF) algorithm gets good has representations in all the views, representations from different performance on unmapped data, and outperforms existing views representing a same object are exactly known, algorithms on partially mapped data and completely mapped and the representations of the same object have the same data.