Goto

Collaborating Authors

 Zola, Francesco


Enhancing Law Enforcement Training: A Gamified Approach to Detecting Terrorism Financing

arXiv.org Artificial Intelligence

Tools for fighting cyber-criminal activities using new technologies are promoted and deployed every day. However, too often, they are unnecessarily complex and hard to use, requiring deep domain and technical knowledge. These characteristics often limit the engagement of law enforcement and end-users in these technologies that, despite their potential, remain misunderstood. For this reason, in this study, we describe our experience in combining learning and training methods and the potential benefits of gamification to enhance technology transfer and increase adult learning. In fact, in this case, participants are experienced practitioners in professions/industries that are exposed to terrorism financing (such as Law Enforcement Officers, Financial Investigation Officers, private investigators, etc.) We define training activities on different levels for increasing the exchange of information about new trends and criminal modus operandi among and within law enforcement agencies, intensifying cross-border cooperation and supporting efforts to combat and prevent terrorism funding activities. On the other hand, a game (hackathon) is designed to address realistic challenges related to the dark net, crypto assets, new payment systems and dark web marketplaces that could be used for terrorist activities. The entire methodology was evaluated using quizzes, contest results, and engagement metrics. In particular, training events show about 60% of participants complete the 11-week training course, while the Hackathon results, gathered in two pilot studies (Madrid and The Hague), show increasing expertise among the participants (progression in the achieved points on average). At the same time, more than 70% of participants positively evaluate the use of the gamification approach, and more than 85% of them consider the implemented Use Cases suitable for their investigations.


NeuralSentinel: Safeguarding Neural Network Reliability and Trustworthiness

arXiv.org Artificial Intelligence

The usage of Artificial Intelligence (AI) systems has increased exponentially, thanks to their ability to reduce the amount of data to be analyzed, the user efforts and preserving a high rate of accuracy. However, introducing this new element in the loop has converted them into attacked points that can compromise the reliability of the systems. This new scenario has raised crucial challenges regarding the reliability and trustworthiness of the AI models, as well as about the uncertainties in their response decisions, becoming even more crucial when applied in critical domains such as healthcare, chemical, electrical plants, etc. To contain these issues, in this paper, we present NeuralSentinel (NS), a tool able to validate the reliability and trustworthiness of AI models. This tool combines attack and defence strategies and explainability concepts to stress an AI model and help non-expert staff increase their confidence in this new system by understanding the model decisions. NS provide a simple and easy-to-use interface for helping humans in the loop dealing with all the needed information. This tool was deployed and used in a Hackathon event to evaluate the reliability of a skin cancer image detector. During the event, experts and non-experts attacked and defended the detector, learning which factors were the most important for model misclassification and which techniques were the most efficient. The event was also used to detect NS's limitations and gather feedback for further improvements.


Conditional Generative Adversarial Network for keystroke presentation attack

arXiv.org Artificial Intelligence

Cybersecurity is a crucial step in data protection to ensure user security and personal data privacy. In this sense, many companies have started to control and restrict access to their data using authentication systems. However, these traditional authentication methods, are not enough for ensuring data protection, and for this reason, behavioral biometrics have gained importance. Despite their promising results and the wide range of applications, biometric systems have shown to be vulnerable to malicious attacks, such as Presentation Attacks. For this reason, in this work, we propose to study a new approach aiming to deploy a presentation attack towards a keystroke authentication system. Our idea is to use Conditional Generative Adversarial Networks (cGAN) for generating synthetic keystroke data that can be used for impersonating an authorized user. These synthetic data are generated following two different real use cases, one in which the order of the typed words is known (ordered dynamic) and the other in which this order is unknown (no-ordered dynamic). Finally, both keystroke dynamics (ordered and no-ordered) are validated using an external keystroke authentication system. Results indicate that the cGAN can effectively generate keystroke dynamics patterns that can be used for deceiving keystroke authentication systems.


Generative Adversarial Networks for Bitcoin Data Augmentation

arXiv.org Machine Learning

In Bitcoin entity classification, results are strongly conditioned by the ground-truth dataset, especially when applying supervised machine learning approaches. However, these ground-truth datasets are frequently affected by significant class imbalance as generally they contain much more information regarding legal services (Exchange, Gambling), than regarding services that may be related to illicit activities (Mixer, Service). Class imbalance increases the complexity of applying machine learning techniques and reduces the quality of classification results, especially for underrepresented, but critical classes. In this paper, we propose to address this problem by using Generative Adversarial Networks (GANs) for Bitcoin data augmentation as GANs recently have shown promising results in the domain of image classification. However, there is no "one-fits-all" GAN solution that works for every scenario. In fact, setting GAN training parameters is non-trivial and heavily affects the quality of the generated synthetic data. We therefore evaluate how GAN parameters such as the optimization function, the size of the dataset and the chosen batch size affect GAN implementation for one underrepresented entity class (Mining Pool) and demonstrate how a "good" GAN configuration can be obtained that achieves high similarity between synthetically generated and real Bitcoin address data. To the best of our knowledge, this is the first study presenting GANs as a valid tool for generating synthetic address data for data augmentation in Bitcoin entity classification.