Goto

Collaborating Authors

 Zięba, Maciej


Unifying Perspectives: Plausible Counterfactual Explanations on Global, Group-wise, and Local Levels

arXiv.org Artificial Intelligence

Growing regulatory and societal pressures demand increased transparency in AI, particularly in understanding the decisions made by complex machine learning models. Counterfactual Explanations (CFs) have emerged as a promising technique within Explainable AI (xAI), offering insights into individual model predictions. However, to understand the systemic biases and disparate impacts of AI models, it is crucial to move beyond local CFs and embrace global explanations, which offer a holistic view across diverse scenarios and populations. Unfortunately, generating Global Counterfactual Explanations (GCEs) faces challenges in computational complexity, defining the scope of "global," and ensuring the explanations are both globally representative and locally plausible. We introduce a novel unified approach for generating Local, Group-wise, and Global Counterfactual Explanations for differentiable classification models via gradient-based optimization to address these challenges. This framework aims to bridge the gap between individual and systemic insights, enabling a deeper understanding of model decisions and their potential impact on diverse populations.


Probabilistically Plausible Counterfactual Explanations with Normalizing Flows

arXiv.org Artificial Intelligence

We present PPCEF, a novel method for generating probabilistically plausible counterfactual explanations (CFs). PPCEF advances beyond existing methods by combining a probabilistic formulation that leverages the data distribution with the optimization of plausibility within a unified framework. Compared to reference approaches, our method enforces plausibility by directly optimizing the explicit density function without assuming a particular family of parametrized distributions. This ensures CFs are not only valid (i.e., achieve class change) but also align with the underlying data's probability density. For that purpose, our approach leverages normalizing flows as powerful density estimators to capture the complex high-dimensional data distribution. Furthermore, we introduce a novel loss that balances the trade-off between achieving class change and maintaining closeness to the original instance while also incorporating a probabilistic plausibility term. PPCEF's unconstrained formulation allows for efficient gradient-based optimization with batch processing, leading to orders of magnitude faster computation compared to prior methods. Moreover, the unconstrained formulation of PPCEF allows for the seamless integration of future constraints tailored to specific counterfactual properties. Finally, extensive evaluations demonstrate PPCEF's superiority in generating high-quality, probabilistically plausible counterfactual explanations in high-dimensional tabular settings. This makes PPCEF a powerful tool for not only interpreting complex machine learning models but also for improving fairness, accountability, and trust in AI systems.


Modeling Uncertainty in Personalized Emotion Prediction with Normalizing Flows

arXiv.org Artificial Intelligence

Designing predictive models for subjective problems in natural language processing (NLP) remains challenging. This is mainly due to its non-deterministic nature and different perceptions of the content by different humans. It may be solved by Personalized Natural Language Processing (PNLP), where the model exploits additional information about the reader to make more accurate predictions. However, current approaches require complete information about the recipients to be straight embedded. Besides, the recent methods focus on deterministic inference or simple frequency-based estimations of the probabilities. In this work, we overcome this limitation by proposing a novel approach to capture the uncertainty of the forecast using conditional Normalizing Flows. This allows us to model complex multimodal distributions and to compare various models using negative log-likelihood (NLL). In addition, the new solution allows for various interpretations of possible reader perception thanks to the available sampling function. We validated our method on three challenging, subjective NLP tasks, including emotion recognition and hate speech. The comparative analysis of generalized and personalized approaches revealed that our personalized solutions significantly outperform the baseline and provide more precise uncertainty estimates. The impact on the text interpretability and uncertainty studies are presented as well. The information brought by the developed methods makes it possible to build hybrid models whose effectiveness surpasses classic solutions. In addition, an analysis and visualization of the probabilities of the given decisions for texts with high entropy of annotations and annotators with mixed views were carried out.


TreeFlow: Going beyond Tree-based Gaussian Probabilistic Regression

arXiv.org Artificial Intelligence

The tree-based ensembles are known for their outstanding performance in classification and regression problems characterized by feature vectors represented by mixed-type variables from various ranges and domains. However, considering regression problems, they are primarily designed to provide deterministic responses or model the uncertainty of the output with Gaussian or parametric distribution. In this work, we introduce TreeFlow, the tree-based approach that combines the benefits of using tree ensembles with the capabilities of modeling flexible probability distributions using normalizing flows. The main idea of the solution is to use a tree-based model as a feature extractor and combine it with a conditional variant of normalizing flow. Consequently, our approach is capable of modeling complex distributions for the regression outputs. We evaluate the proposed method on challenging regression benchmarks with varying volume, feature characteristics, and target dimensionality. We obtain the SOTA results for both probabilistic and deterministic metrics on datasets with multi-modal target distributions and competitive results on unimodal ones compared to tree-based regression baselines.


Classical Out-of-Distribution Detection Methods Benchmark in Text Classification Tasks

arXiv.org Artificial Intelligence

State-of-the-art models can perform well in controlled environments, but they often struggle when presented with out-of-distribution (OOD) examples, making OOD detection a critical component of NLP systems. In this paper, we focus on highlighting the limitations of existing approaches to OOD detection in NLP. Specifically, we evaluated eight OOD detection methods that are easily integrable into existing NLP systems and require no additional OOD data or model modifications. One of our contributions is providing a well-structured research environment that allows for full reproducibility of the results. Additionally, our analysis shows that existing OOD detection methods for NLP tasks are not yet sufficiently sensitive to capture all samples characterized by various types of distributional shifts. Particularly challenging testing scenarios arise in cases of background shift and randomly shuffled word order within in domain texts. This highlights the need for future work to develop more effective OOD detection approaches for the NLP problems, and our work provides a well-defined foundation for further research in this area.


Speech Driven Video Editing via an Audio-Conditioned Diffusion Model

arXiv.org Artificial Intelligence

Taking inspiration from recent developments in visual generative tasks using diffusion models, we propose a method for end-to-end speech-driven video editing using a denoising diffusion model. Given a video of a talking person, and a separate auditory speech recording, the lip and jaw motions are re-synchronized without relying on intermediate structural representations such as facial landmarks or a 3D face model. We show this is possible by conditioning a denoising diffusion model on audio mel spectral features to generate synchronised facial motion. Proof of concept results are demonstrated on both single-speaker and multi-speaker video editing, providing a baseline model on the CREMA-D audiovisual data set. To the best of our knowledge, this is the first work to demonstrate and validate the feasibility of applying end-to-end denoising diffusion models to the task of audio-driven video editing.


RegFlow: Probabilistic Flow-based Regression for Future Prediction

arXiv.org Machine Learning

Predicting future states or actions of a given system remains a fundamental, yet unsolved challenge of intelligence, especially in the scope of complex and non-deterministic scenarios, such as modeling behavior of humans. Existing approaches provide results under strong assumptions concerning unimodality of future states, or, at best, assuming specific probability distributions that often poorly fit to real-life conditions. In this work we introduce a robust and flexible probabilistic framework that allows to model future predictions with virtually no constrains regarding the modality or underlying probability distribution. To achieve this goal, we leverage a hypernetwork architecture and train a continuous normalizing flow model. The resulting method dubbed RegFlow achieves state-of-the-art results on several benchmark datasets, outperforming competing approaches by a significant margin.


Generative Adversarial Networks: recent developments

arXiv.org Machine Learning

In traditional generative modeling, good data representation is very often a base for a good machine learning model. It can be linked to good representations encoding more explanatory factors that are hidden in the original data. With the invention of Generative Adversarial Networks (GANs), a subclass of generative models that are able to learn representations in an unsupervised and semi-supervised fashion, we are now able to adversarially learn good mappings from a simple prior distribution to a target data distribution. This paper presents an overview of recent developments in GANs with a focus on learning latent space representations.


Semi-supervised learning with Bidirectional GANs

arXiv.org Machine Learning

In this work we introduce a novel approach to train Bidirectional Generative Adversarial Model (BiGAN) in a semi-supervised manner. The presented method utilizes triplet loss function as an additional component of the objective function used to train discriminative data representation in the latent space of the BiGAN model. This representation can be further used as a seed for generating artificial images, but also as a good feature embedding for classification and image retrieval tasks. We evaluate the quality of the proposed method in the two mentioned challenging tasks using two benchmark datasets: CIFAR10 and SVHN.


Adversarial Autoencoders for Generating 3D Point Clouds

arXiv.org Machine Learning

Deep generative architectures provide a way to model not only images, but also complex, 3-dimensional objects, such as point clouds. In this work, we present a novel method to obtain meaningful representations of 3D shapes that can be used for clustering and reconstruction. Contrary to existing methods for 3D point cloud generation that train separate decoupled models for representation learning and generation, our approach is the first end-to-end solution that allows to simultaneously learn a latent space of representation and generate 3D shape out of it. To achieve this goal, we extend a deep Adversarial Autoencoder model (AAE) to accept 3D input and create 3D output. Thanks to our end-to-end training regime, the resulting method called 3D Adversarial Autoencoder (3dAAE) obtains either binary or continuous latent space that covers much wider portion of training data distribution, hence allowing smooth interpolation between the shapes. Finally, our extensive quantitative evaluation shows that 3dAAE provides state-of-the-art results on a set of benchmark tasks.