Goto

Collaborating Authors

 Zi, Xing


Visual and Text Prompt Segmentation: A Novel Multi-Model Framework for Remote Sensing

arXiv.org Artificial Intelligence

Pixel-level segmentation is essential in remote sensing, where foundational vision models like CLIP and Segment Anything Model(SAM) have demonstrated significant capabilities in zero-shot segmentation tasks. Despite their advances, challenges specific to remote sensing remain substantial. Firstly, The SAM without clear prompt constraints, often generates redundant masks, and making post-processing more complex. Secondly, the CLIP model, mainly designed for global feature alignment in foundational models, often overlooks local objects crucial to remote sensing. This oversight leads to inaccurate recognition or misplaced focus in multi-target remote sensing imagery. Thirdly, both models have not been pre-trained on multi-scale aerial views, increasing the likelihood of detection failures. To tackle these challenges, we introduce the innovative VTPSeg pipeline, utilizing the strengths of Grounding DINO, CLIP, and SAM for enhanced open-vocabulary image segmentation. The Grounding DINO+(GD+) module generates initial candidate bounding boxes, while the CLIP Filter++(CLIP++) module uses a combination of visual and textual prompts to refine and filter out irrelevant object bounding boxes, ensuring that only pertinent objects are considered. Subsequently, these refined bounding boxes serve as specific prompts for the FastSAM model, which executes precise segmentation. Our VTPSeg is validated by experimental and ablation study results on five popular remote sensing image segmentation datasets.


Enhancing Retrieval and Managing Retrieval: A Four-Module Synergy for Improved Quality and Efficiency in RAG Systems

arXiv.org Artificial Intelligence

Retrieval-augmented generation (RAG) techniques leverage the in-context learning capabilities of large language models (LLMs) to produce more accurate and relevant responses. Originating from the simple 'retrieve-then-read' approach, the RAG framework has evolved into a highly flexible and modular paradigm. A critical component, the Query Rewriter module, enhances knowledge retrieval by generating a search-friendly query. This method aligns input questions more closely with the knowledge base. Our research identifies opportunities to enhance the Query Rewriter module to Query Rewriter+ by generating multiple queries to overcome the Information Plateaus associated with a single query and by rewriting questions to eliminate Ambiguity, thereby clarifying the underlying intent. We also find that current RAG systems exhibit issues with Irrelevant Knowledge; to overcome this, we propose the Knowledge Filter. These two modules are both based on the instruction-tuned Gemma-2B model, which together enhance response quality. The final identified issue is Redundant Retrieval; we introduce the Memory Knowledge Reservoir and the Retriever Trigger to solve this. The former supports the dynamic expansion of the RAG system's knowledge base in a parameter-free manner, while the latter optimizes the cost for accessing external knowledge, thereby improving resource utilization and response efficiency. These four RAG modules synergistically improve the response quality and efficiency of the RAG system. The effectiveness of these modules has been validated through experiments and ablation studies across six common QA datasets. The source code can be accessed at https://github.com/Ancientshi/ERM4.


ERAGent: Enhancing Retrieval-Augmented Language Models with Improved Accuracy, Efficiency, and Personalization

arXiv.org Artificial Intelligence

Retrieval-augmented generation (RAG) for language models significantly improves language understanding systems. The basic retrieval-then-read pipeline of response generation has evolved into a more extended process due to the integration of various components, sometimes even forming loop structures. Despite its advancements in improving response accuracy, challenges like poor retrieval quality for complex questions that require the search of multifaceted semantic information, inefficiencies in knowledge re-retrieval during long-term serving, and lack of personalized responses persist. Motivated by transcending these limitations, we introduce ERAGent, a cutting-edge framework that embodies an advancement in the RAG area. Our contribution is the introduction of the synergistically operated module: Enhanced Question Rewriter and Knowledge Filter, for better retrieval quality. Retrieval Trigger is incorporated to curtail extraneous external knowledge retrieval without sacrificing response quality. ERAGent also personalizes responses by incorporating a learned user profile. The efficiency and personalization characteristics of ERAGent are supported by the Experiential Learner module which makes the AI assistant being capable of expanding its knowledge and modeling user profile incrementally. Rigorous evaluations across six datasets and three question-answering tasks prove ERAGent's superior accuracy, efficiency, and personalization, emphasizing its potential to advance the RAG field and its applicability in practical systems.