Goto

Collaborating Authors

 Zhu, null


Aligned Multi Objective Optimization

arXiv.org Artificial Intelligence

To date, the multi-objective optimization literature has mainly focused on conflicting objectives, studying the Pareto front, or requiring users to balance tradeoffs. Yet, in machine learning practice, there are many scenarios where such conflict does not take place. Recent findings from multi-task learning, reinforcement learning, and LLMs training show that diverse related tasks can enhance performance across objectives simultaneously. Despite this evidence, such phenomenon has not been examined from an optimization perspective. This leads to a lack of generic gradient-based methods that can scale to scenarios with a large number of related objectives. To address this gap, we introduce the Aligned Multi-Objective Optimization framework, propose new algorithms for this setting, and provide theoretical guarantees of their superior performance compared to naive approaches.


Magentic-One: A Generalist Multi-Agent System for Solving Complex Tasks

arXiv.org Artificial Intelligence

Modern AI agents, driven by advances in large foundation models, promise to enhance our productivity and transform our lives by augmenting our knowledge and capabilities. To achieve this vision, AI agents must effectively plan, perform multi-step reasoning and actions, respond to novel observations, and recover from errors, to successfully complete complex tasks across a wide range of scenarios. In this work, we introduce Magentic-One, a high-performing open-source agentic system for solving such tasks. Magentic-One uses a multi-agent architecture where a lead agent, the Orchestrator, plans, tracks progress, and re-plans to recover from errors. Throughout task execution, the Orchestrator directs other specialized agents to perform tasks as needed, such as operating a web browser, navigating local files, or writing and executing Python code. We show that Magentic-One achieves statistically competitive performance to the state-of-the-art on three diverse and challenging agentic benchmarks: GAIA, AssistantBench, and WebArena. Magentic-One achieves these results without modification to core agent capabilities or to how they collaborate, demonstrating progress towards generalist agentic systems. Moreover, Magentic-One's modular design allows agents to be added or removed from the team without additional prompt tuning or training, easing development and making it extensible to future scenarios. We provide an open-source implementation of Magentic-One, and we include AutoGenBench, a standalone tool for agentic evaluation. AutoGenBench provides built-in controls for repetition and isolation to run agentic benchmarks in a rigorous and contained manner -- which is important when agents' actions have side-effects. Magentic-One, AutoGenBench and detailed empirical performance evaluations of Magentic-One, including ablations and error analysis are available at https://aka.ms/magentic-one