Goto

Collaborating Authors

 Zhu, Yunchang


Cross-Modal Safety Mechanism Transfer in Large Vision-Language Models

arXiv.org Artificial Intelligence

Vision-language alignment in Large Vision-Language Models (LVLMs) successfully enables LLMs to understand visual input. However, we find that existing vision-language alignment methods fail to transfer the existing safety mechanism for text in LLMs to vision, which leads to vulnerabilities in toxic image. To explore the cause of this problem, we give the insightful explanation of where and how the safety mechanism of LVLMs operates and conduct comparative analysis between text and vision. We find that the hidden states at the specific transformer layers play a crucial role in the successful activation of safety mechanism, while the vision-language alignment at hidden states level in current methods is insufficient. This results in a semantic shift for input images compared to text in hidden states, therefore misleads the safety mechanism. To address this, we propose a novel Text-Guided vision-language Alignment method (TGA) for LVLMs. TGA retrieves the texts related to input vision and uses them to guide the projection of vision into the hidden states space in LLMs. Experiments show that TGA not only successfully transfers the safety mechanism for text in basic LLMs to vision in vision-language alignment for LVLMs without any safety fine-tuning on the visual modality but also maintains the general performance on various vision tasks (Safe and Good). Vision-language alignment methods for Large Vision-Language Models (LVLMs) use a basic LLM, a lightweight vision encoder and projector to efficiently enable the LLM to understand visual input for various vision tasks with relatively low training costs (Liu et al., 2024c; Dai et al., 2023; Zhu et al., 2023). Recent studies indicate the safety of LVLMs deserves attention (Liu et al., 2024a; Wang et al., 2023; Gong et al., 2023). Given that vision and language are aligned into a common space in LVLMs, the safety mechanism should be shared by both of them.


Cross-Model Comparative Loss for Enhancing Neuronal Utility in Language Understanding

arXiv.org Artificial Intelligence

Current natural language understanding (NLU) models have been continuously scaling up, both in terms of model size and input context, introducing more hidden and input neurons. While this generally improves performance on average, the extra neurons do not yield a consistent improvement for all instances. This is because some hidden neurons are redundant, and the noise mixed in input neurons tends to distract the model. Previous work mainly focuses on extrinsically reducing low-utility neurons by additional post- or pre-processing, such as network pruning and context selection, to avoid this problem. Beyond that, can we make the model reduce redundant parameters and suppress input noise by intrinsically enhancing the utility of each neuron? If a model can efficiently utilize neurons, no matter which neurons are ablated (disabled), the ablated submodel should perform no better than the original full model. Based on such a comparison principle between models, we propose a cross-model comparative loss for a broad range of tasks. Comparative loss is essentially a ranking loss on top of the task-specific losses of the full and ablated models, with the expectation that the task-specific loss of the full model is minimal. We demonstrate the universal effectiveness of comparative loss through extensive experiments on 14 datasets from 3 distinct NLU tasks based on 4 widely used pretrained language models, and find it particularly superior for models with few parameters or long input.