Zhu, Youxiang
Focus Directions Make Your Language Models Pay More Attention to Relevant Contexts
Zhu, Youxiang, Li, Ruochen, Wang, Danqing, Haehn, Daniel, Liang, Xiaohui
Long-context large language models (LLMs) are prone to be distracted by irrelevant contexts. The reason for distraction remains poorly understood. In this paper, we first identify the contextual heads, a special group of attention heads that control the overall attention of the LLM. Then, we demonstrate that distraction arises when contextual heads fail to allocate sufficient attention to relevant contexts and can be mitigated by increasing attention to these contexts. We further identify focus directions, located at the key and query activations of these heads, which enable them to allocate more attention to relevant contexts without explicitly specifying which context is relevant. We comprehensively evaluate the effect of focus direction on various long-context tasks and find out focus directions could help to mitigate the poor task alignment of the long-context LLMs. We believe our findings could promote further research on long-context LLM alignment.
UMB@PerAnsSumm 2025: Enhancing Perspective-Aware Summarization with Prompt Optimization and Supervised Fine-Tuning
Qi, Kristin, Zhu, Youxiang, Liang, Xiaohui
We present our approach to the PerAnsSumm Shared Task, which involves perspective span identification and perspective-aware summarization in community question-answering (CQA) threads. For span identification, we adopt ensemble learning that integrates three transformer models through averaging to exploit individual model strengths, achieving an 82.91% F1-score on test data. For summarization, we design a suite of Chain-of-Thought (CoT) prompting strategies that incorporate keyphrases and guide information to structure summary generation into manageable steps. To further enhance summary quality, we apply prompt optimization using the DSPy framework and supervised fine-tuning (SFT) on Llama-3 to adapt the model to domain-specific data. Experimental results on validation and test sets show that structured prompts with keyphrases and guidance improve summaries aligned with references, while the combination of prompt optimization and fine-tuning together yields significant improvement in both relevance and factuality evaluation metrics.
Analyzing Multimodal Features of Spontaneous Voice Assistant Commands for Mild Cognitive Impairment Detection
Lin, Nana, Zhu, Youxiang, Liang, Xiaohui, Batsis, John A., Summerour, Caroline
Mild cognitive impairment (MCI) is a major public health concern due to its high risk of progressing to dementia. This study investigates the potential of detecting MCI with spontaneous voice assistant (VA) commands from 35 older adults in a controlled setting. Specifically, a command-generation task is designed with pre-defined intents for participants to freely generate commands that are more associated with cognitive ability than read commands. We develop MCI classification and regression models with audio, textual, intent, and multimodal fusion features. We find the command-generation task outperforms the command-reading task with an average classification accuracy of 82%, achieved by leveraging multimodal fusion features. In addition, generated commands correlate more strongly with memory and attention subdomains than read commands. Our results confirm the effectiveness of the command-generation task and imply the promise of using longitudinal in-home commands for MCI detection.
Evaluating Picture Description Speech for Dementia Detection using Image-text Alignment
Zhu, Youxiang, Lin, Nana, Liang, Xiaohui, Batsis, John A., Roth, Robert M., MacWhinney, Brian
Using picture description speech for dementia detection has been studied for 30 years. Despite the long history, previous models focus on identifying the differences in speech patterns between healthy subjects and patients with dementia but do not utilize the picture information directly. In this paper, we propose the first dementia detection models that take both the picture and the description texts as inputs and incorporate knowledge from large pre-trained image-text alignment models. We observe the difference between dementia and healthy samples in terms of the text's relevance to the picture and the focused area of the picture. We thus consider such a difference could be used to enhance dementia detection accuracy. Specifically, we use the text's relevance to the picture to rank and filter the sentences of the samples. We also identified focused areas of the picture as topics and categorized the sentences according to the focused areas. We propose three advanced models that pre-processed the samples based on their relevance to the picture, sub-image, and focused areas. The evaluation results show that our advanced models, with knowledge of the picture and large image-text alignment models, achieve state-of-the-art performance with the best detection accuracy at 83.44%, which is higher than the text-only baseline model at 79.91%. Lastly, we visualize the sample and picture results to explain the advantages of our models.