Goto

Collaborating Authors

 Zhu, Yimeng


SKT: Integrating State-Aware Keypoint Trajectories with Vision-Language Models for Robotic Garment Manipulation

arXiv.org Artificial Intelligence

Automating garment manipulation poses a significant challenge for assistive robotics due to the diverse and deformable nature of garments. Traditional approaches typically require separate models for each garment type, which limits scalability and adaptability. In contrast, this paper presents a unified approach using vision-language models (VLMs) to improve keypoint prediction across various garment categories. By interpreting both visual and semantic information, our model enables robots to manage different garment states with a single model. We created a large-scale synthetic dataset using advanced simulation techniques, allowing scalable training without extensive real-world data. Experimental results indicate that the VLM-based method significantly enhances keypoint detection accuracy and task success rates, providing a more flexible and general solution for robotic garment manipulation. In addition, this research also underscores the potential of VLMs to unify various garment manipulation tasks within a single framework, paving the way for broader applications in home automation and assistive robotics for future.


A3VLM: Actionable Articulation-Aware Vision Language Model

arXiv.org Artificial Intelligence

Vision Language Models (VLMs) have received significant attention in recent years in the robotics community. VLMs are shown to be able to perform complex visual reasoning and scene understanding tasks, which makes them regarded as a potential universal solution for general robotics problems such as manipulation and navigation. However, previous VLMs for robotics such as RT-1, RT-2, and ManipLLM have focused on directly learning robot-centric actions. Such approaches require collecting a significant amount of robot interaction data, which is extremely costly in the real world. Thus, we propose A3VLM, an object-centric, actionable, articulation-aware vision language model. A3VLM focuses on the articulation structure and action affordances of objects. Its representation is robot-agnostic and can be translated into robot actions using simple action primitives. Extensive experiments in both simulation benchmarks and real-world settings demonstrate the effectiveness and stability of A3VLM. We release our code and other materials at https://github.com/changhaonan/A3VLM.


On decoder-only architecture for speech-to-text and large language model integration

arXiv.org Artificial Intelligence

Large language models (LLMs) have achieved remarkable success in the field of natural language processing, enabling better human-computer interaction using natural language. However, the seamless integration of speech signals into LLMs has not been explored well. The "decoder-only" architecture has also not been well studied for speech processing tasks. In this research, we introduce Speech-LLaMA, a novel approach that effectively incorporates acoustic information into text-based large language models. Our method leverages Connectionist Temporal Classification and a simple audio encoder to map the compressed acoustic features to the continuous semantic space of the LLM. In addition, we further probe the decoder-only architecture for speech-to-text tasks by training a smaller scale randomly initialized speech-LLaMA model from speech-text paired data alone. We conduct experiments on multilingual speech-to-text translation tasks and demonstrate a significant improvement over strong baselines, highlighting the potential advantages of decoder-only models for speech-to-text conversion.


Building High-accuracy Multilingual ASR with Gated Language Experts and Curriculum Training

arXiv.org Artificial Intelligence

We propose gated language experts and curriculum training to enhance multilingual transformer transducer models without requiring language identification (LID) input from users during inference. Our method incorporates a gating mechanism and LID loss, enabling transformer experts to learn language-specific information. By combining gated transformer experts with shared transformer layers, we construct multilingual transformer blocks and utilize linear experts to effectively regularize the joint network. The curriculum training scheme leverages LID to guide the gated experts in improving their respective language performance. Experimental results on a bilingual task involving English and Spanish demonstrate significant improvements, with average relative word error reductions of 12.5% and 7.3% compared to the baseline bilingual and monolingual models, respectively. Notably, our method achieves performance comparable to the upper-bound model trained and inferred with oracle LID. Extending our approach to trilingual, quadrilingual, and pentalingual models reveals similar advantages to those observed in the bilingual models, highlighting its ease of extension to multiple languages.