Zhu, Xingquan
TransFair: Transferring Fairness from Ocular Disease Classification to Progression Prediction
Gheisi, Leila, Chu, Henry, Gottumukkala, Raju, Luo, Yan, Zhu, Xingquan, Wang, Mengyu, Shi, Min
The use of artificial intelligence (AI) in automated disease classification significantly reduces healthcare costs and improves the accessibility of services. However, this transformation has given rise to concerns about the fairness of AI, which disproportionately affects certain groups, particularly patients from underprivileged populations. Recently, a number of methods and large-scale datasets have been proposed to address group performance disparities. Although these methods have shown effectiveness in disease classification tasks, they may fall short in ensuring fair prediction of disease progression, mainly because of limited longitudinal data with diverse demographics available for training a robust and equitable prediction model. In this paper, we introduce TransFair to enhance demographic fairness in progression prediction for ocular diseases. TransFair aims to transfer a fairness-enhanced disease classification model to the task of progression prediction with fairness preserved. Specifically, we train a fair EfficientNet, termed FairEN, equipped with a fairness-aware attention mechanism using extensive data for ocular disease classification. Subsequently, this fair classification model is adapted to a fair progression prediction model through knowledge distillation, which aims to minimize the latent feature distances between the classification and progression prediction models. We evaluate FairEN and TransFair for fairness-enhanced ocular disease classification and progression prediction using both two-dimensional (2D) and 3D retinal images. Extensive experiments and comparisons with models with and without considering fairness learning show that TransFair effectively enhances demographic equity in predicting ocular disease progression.
ATNPA: A Unified View of Oversmoothing Alleviation in Graph Neural Networks
Jin, Yufei, Zhu, Xingquan
Oversmoothing is a commonly observed challenge in graph neural network (GNN) learning, where, as layers increase, embedding features learned from GNNs quickly become similar/indistinguishable, making them incapable of differentiating network proximity. A GNN with shallow layer architectures can only learn short-term relation or localized structure information, limiting its power of learning long-term connection, evidenced by their inferior learning performance on heterophilous graphs. Tackling oversmoothing is crucial to harness deep-layer architectures for GNNs. To date, many methods have been proposed to alleviate oversmoothing. The vast difference behind their design principles, combined with graph complications, make it difficult to understand and even compare their difference in tackling the oversmoothing. In this paper, we propose ATNPA, a unified view with five key steps: Augmentation, Transformation, Normalization, Propagation, and Aggregation, to summarize GNN oversmoothing alleviation approaches. We first outline three themes to tackle oversmoothing, and then separate all methods into six categories, followed by detailed reviews of representative methods, including their relation to the ATNPA, and discussion about their niche, strength, and weakness. The review not only draws in-depth understanding of existing methods in the field, but also shows a clear road map for future study.
Graph Learning under Distribution Shifts: A Comprehensive Survey on Domain Adaptation, Out-of-distribution, and Continual Learning
Wu, Man, Zheng, Xin, Zhang, Qin, Shen, Xiao, Luo, Xiong, Zhu, Xingquan, Pan, Shirui
Graph learning plays a pivotal role and has gained significant attention in various application scenarios, from social network analysis to recommendation systems, for its effectiveness in modeling complex data relations represented by graph structural data. In reality, the real-world graph data typically show dynamics over time, with changing node attributes and edge structure, leading to the severe graph data distribution shift issue. This issue is compounded by the diverse and complex nature of distribution shifts, which can significantly impact the performance of graph learning methods in degraded generalization and adaptation capabilities, posing a substantial challenge to their effectiveness. In this survey, we provide a comprehensive review and summary of the latest approaches, strategies, and insights that address distribution shifts within the context of graph learning. Concretely, according to the observability of distributions in the inference stage and the availability of sufficient supervision information in the training stage, we categorize existing graph learning methods into several essential scenarios, including graph domain adaptation learning, graph out-of-distribution learning, and graph continual learning. For each scenario, a detailed taxonomy is proposed, with specific descriptions and discussions of existing progress made in distribution-shifted graph learning. Additionally, we discuss the potential applications and future directions for graph learning under distribution shifts with a systematic analysis of the current state in this field. The survey is positioned to provide general guidance for the development of effective graph learning algorithms in handling graph distribution shifts, and to stimulate future research and advancements in this area.
Structure-free Graph Condensation: From Large-scale Graphs to Condensed Graph-free Data
Zheng, Xin, Zhang, Miao, Chen, Chunyang, Nguyen, Quoc Viet Hung, Zhu, Xingquan, Pan, Shirui
Graph condensation, which reduces the size of a large-scale graph by synthesizing a small-scale condensed graph as its substitution, has immediate benefits for various graph learning tasks. However, existing graph condensation methods rely on the joint optimization of nodes and structures in the condensed graph, and overlook critical issues in effectiveness and generalization ability. In this paper, we advocate a new Structure-Free Graph Condensation paradigm, named SFGC, to distill a large-scale graph into a small-scale graph node set without explicit graph structures, i.e., graph-free data. Our idea is to implicitly encode topology structure information into the node attributes in the synthesized graph-free data, whose topology is reduced to an identity matrix. Specifically, SFGC contains two collaborative components: (1) a training trajectory meta-matching scheme for effectively synthesizing small-scale graph-free data; (2) a graph neural feature score metric for dynamically evaluating the quality of the condensed data. Through training trajectory meta-matching, SFGC aligns the long-term GNN learning behaviors between the large-scale graph and the condensed small-scale graph-free data, ensuring comprehensive and compact transfer of informative knowledge to the graph-free data. Afterward, the underlying condensed graph-free data would be dynamically evaluated with the graph neural feature score, which is a closed-form metric for ensuring the excellent expressiveness of the condensed graph-free data. Extensive experiments verify the superiority of SFGC across different condensation ratios.
Search Efficient Binary Network Embedding
Zhang, Daokun, Yin, Jie, Zhu, Xingquan, Zhang, Chengqi
Traditional network embedding primarily focuses on learning a continuous vector representation for each node, preserving network structure and/or node content information, such that off-the-shelf machine learning algorithms can be easily applied to the vector-format node representations for network analysis. However, the learned continuous vector representations are inefficient for large-scale similarity search, which often involves finding nearest neighbors measured by distance or similarity in a continuous vector space. In this paper, we propose a search efficient binary network embedding algorithm called BinaryNE to learn a binary code for each node, by simultaneously modeling node context relations and node attribute relations through a three-layer neural network. BinaryNE learns binary node representations through a stochastic gradient descent based online learning algorithm. The learned binary encoding not only reduces memory usage to represent each node, but also allows fast bit-wise comparisons to support faster node similarity search than using Euclidean distance or other distance measures. Extensive experiments and comparisons demonstrate that BinaryNE not only delivers more than 25 times faster search speed, but also provides comparable or better search quality than traditional continuous vector based network embedding methods. The binary codes learned by BinaryNE also render competitive performance on node classification and node clustering tasks. The source code of this paper is available at https://github.com/daokunzhang/BinaryNE.
Local Contrastive Feature learning for Tabular Data
Gharibshah, Zhabiz, Zhu, Xingquan
Contrastive self-supervised learning has been successfully used in many domains, such as images, texts, graphs, etc., to learn features without requiring label information. In this paper, we propose a new local contrastive feature learning (LoCL) framework, and our theme is to learn local patterns/features from tabular data. In order to create a niche for local learning, we use feature correlations to create a maximum-spanning tree, and break the tree into feature subsets, with strongly correlated features being assigned next to each other. Convolutional learning of the features is used to learn latent feature space, regulated by contrastive and reconstruction losses. Experiments on public tabular datasets show the effectiveness of the proposed method versus state-of-the-art baseline methods.
OPP-Miner: Order-preserving sequential pattern mining
Wu, Youxi, Hu, Qian, Li, Yan, Guo, Lei, Zhu, Xingquan, Wu, Xindong
A time series is a collection of measurements in chronological order. Discovering patterns from time series is useful in many domains, such as stock analysis, disease detection, and weather forecast. To discover patterns, existing methods often convert time series data into another form, such as nominal/symbolic format, to reduce dimensionality, which inevitably deviates the data values. Moreover, existing methods mainly neglect the order relationships between time series values. To tackle these issues, inspired by order-preserving matching, this paper proposes an Order-Preserving sequential Pattern (OPP) mining method, which represents patterns based on the order relationships of the time series data. An inherent advantage of such representation is that the trend of a time series can be represented by the relative order of the values underneath the time series data. To obtain frequent trends in time series, we propose the OPP-Miner algorithm to mine patterns with the same trend (sub-sequences with the same relative order). OPP-Miner employs the filtration and verification strategies to calculate the support and uses pattern fusion strategy to generate candidate patterns. To compress the result set, we also study finding the maximal OPPs. Experiments validate that OPP-Miner is not only efficient and scalable but can also discover similar sub-sequences in time series. In addition, case studies show that our algorithms have high utility in analyzing the COVID-19 epidemic by identifying critical trends and improve the clustering performance.
GraSSNet: Graph Soft Sensing Neural Networks
Huang, Yu, Zhang, Chao, Yella, Jaswanth, Petrov, Sergei, Qian, Xiaoye, Tang, Yufei, Zhu, Xingquan, Bom, Sthitie
In the era of big data, data-driven based classification has become an essential method in smart manufacturing to guide production and optimize inspection. The industrial data obtained in practice is usually time-series data collected by soft sensors, which are highly nonlinear, nonstationary, imbalanced, and noisy. Most existing soft-sensing machine learning models focus on capturing either intra-series temporal dependencies or pre-defined inter-series correlations, while ignoring the correlation between labels as each instance is associated with multiple labels simultaneously. In this paper, we propose a novel graph based soft-sensing neural network (GraSSNet) for multivariate time-series classification of noisy and highly-imbalanced soft-sensing data. The proposed GraSSNet is able to 1) capture the inter-series and intra-series dependencies jointly in the spectral domain; 2) exploit the label correlations by superimposing label graph that built from statistical co-occurrence information; 3) learn features with attention mechanism from both textual and numerical domain; and 4) leverage unlabeled data and mitigate data imbalance by semi-supervised learning. Comparative studies with other commonly used classifiers are carried out on Seagate soft sensing data, and the experimental results validate the competitive performance of our proposed method.
COPD Disease Classification Using Network Embedding with Synthetic Relationships
Wannaphaschaiyong, Anak (Florida Atlantic University ) | Zhu, Xingquan (Florida Atlantic University)
Chronic obstructive pulmonary disease (COPD), a progressive and non-reversible lung disease causing obstructed air-flow from the lungs, often occurs with other diseases not restricted to the respiratory system. Therefore, it is important to understand interaction between genes and diseases to uncover the real causes of a disease. In this paper, we propose to automatically classify COPD diseases, using network of gene disease relationships. We simplify interaction between COPD, COPD multimorbidities, and related genes as a bi-partite network, and apply network embedding together with machine learning classifiers to classify diseases into different categories. Our experiments confirm that adding synthetic edges in a strategic way statistically enhances quality of node embedding and improve COPD disease classification performance.
Network Representation Learning: A Survey
Zhang, Daokun, Yin, Jie, Zhu, Xingquan, Zhang, Chengqi
With the widespread use of information technologies, information networks have increasingly become popular to capture complex relationships across various disciplines, such as social networks, citation networks, telecommunication networks, and biological networks. Analyzing these networks sheds light on different aspects of social life such as the structure of society, information diffusion, and different patterns of communication. However, the large scale of information networks often makes network analytic tasks computationally expensive and intractable. Recently, network representation learning has been proposed as a new learning paradigm that embeds network vertices into a low-dimensional vector space, by preserving network topology structure, vertex content, and other side information. This facilitates the original network to be easily handled in the new vector space for further analysis. In this survey, we perform a thorough review of the current literature on network representation learning in the field of data mining and machine learning. We propose a new categorization to analyze and summarize state-of-the-art network representation learning techniques according to the methodology they employ and the network information they preserve. Finally, to facilitate research on this topic, we summarize benchmark datasets and evaluation methodologies, and discuss open issues and future research directions in this field.