Zhu, Tingshao
Twitter discussions and emotions about COVID-19 pandemic: a machine learning approach
Xue, Jia, Chen, Junxiang, Hu, Ran, Chen, Chen, Zheng, ChengDa, Liu, Xiaoqian, Zhu, Tingshao
The objective of the study is to examine coronavirus disease (COVID-19) related discussions, concerns, and sentiments that emerged from tweets posted by Twitter users. We analyze 4 million Twitter messages related to the COVID-19 pandemic using a list of 25 hashtags such as "coronavirus," "COVID-19," "quarantine" from March 1 to April 21 in 2020. We use a machine learning approach, Latent Dirichlet Allocation (LDA), to identify popular unigram, bigrams, salient topics and themes, and sentiments in the collected Tweets. Popular unigrams include "virus," "lockdown," and "quarantine." Popular bigrams include "COVID-19," "stay home," "corona virus," "social distancing," and "new cases." We identify 13 discussion topics and categorize them into five different themes, such as "public health measures to slow the spread of COVID-19," "social stigma associated with COVID-19," "coronavirus news cases and deaths," "COVID-19 in the United States," and "coronavirus cases in the rest of the world". Across all identified topics, the dominant sentiments for the spread of coronavirus are anticipation that measures that can be taken, followed by a mixed feeling of trust, anger, and fear for different topics. The public reveals a significant feeling of fear when they discuss the coronavirus new cases and deaths than other topics. The study shows that Twitter data and machine learning approaches can be leveraged for infodemiology study by studying the evolving public discussions and sentiments during the COVID-19. Real-time monitoring and assessment of the Twitter discussion and concerns can be promising for public health emergency responses and planning. Already emerged pandemic fear, stigma, and mental health concerns may continue to influence public trust when there occurs a second wave of COVID-19 or a new surge of the imminent pandemic.
Multivariate Regression with Grossly Corrupted Observations: A Robust Approach and its Applications
Zhang, Xiaowei, Xu, Chi, Zhang, Yu, Zhu, Tingshao, Cheng, Li
This paper studies the problem of multivariate linear regression where a portion of the observations is grossly corrupted or is missing, and the magnitudes and locations of such occurrences are unknown in priori. To deal with this problem, we propose a new approach by explicitly consider the error source as well as its sparseness nature. An interesting property of our approach lies in its ability of allowing individual regression output elements or tasks to possess their unique noise levels. Moreover, despite working with a non-smooth optimization problem, our approach still guarantees to converge to its optimal solution. Experiments on synthetic data demonstrate the competitiveness of our approach compared with existing multivariate regression models. In addition, empirically our approach has been validated with very promising results on two exemplar real-world applications: The first concerns the prediction of \textit{Big-Five} personality based on user behaviors at social network sites (SNSs), while the second is 3D human hand pose estimation from depth images. The implementation of our approach and comparison methods as well as the involved datasets are made publicly available in support of the open-source and reproducible research initiatives.
Sensing Subjective Well-being from Social Media
Hao, Bibo, Li, Lin, Gao, Rui, Li, Ang, Zhu, Tingshao
Subjective Well-being(SWB), which refers to how people experience the quality of their lives, is of great use to public policy-makers as well as economic, sociological research, etc. Traditionally, the measurement of SWB relies on time-consuming and costly self-report questionnaires. Nowadays, people are motivated to share their experiences and feelings on social media, so we propose to sense SWB from the vast user generated data on social media. By utilizing 1785 users' social media data with SWB labels, we train machine learning models that are able to "sense" individual SWB from users' social media. Our model, which attains the state-by-art prediction accuracy, can then be used to identify SWB of large population of social media users in time with very low cost.