Zhu, Sicheng
PoisonedParrot: Subtle Data Poisoning Attacks to Elicit Copyright-Infringing Content from Large Language Models
Panaitescu-Liess, Michael-Andrei, Pathmanathan, Pankayaraj, Kaya, Yigitcan, Che, Zora, An, Bang, Zhu, Sicheng, Agrawal, Aakriti, Huang, Furong
As the capabilities of large language models (LLMs) continue to expand, their usage has become increasingly prevalent. However, as reflected in numerous ongoing lawsuits regarding LLM-generated content, addressing copyright infringement remains a significant challenge. In this paper, we introduce PoisonedParrot: the first stealthy data poisoning attack that induces an LLM to generate copyrighted content even when the model has not been directly trained on the specific copyrighted material. PoisonedParrot integrates small fragments of copyrighted text into the poison samples using an off-the-shelf LLM. Despite its simplicity, evaluated in a wide range of experiments, PoisonedParrot is surprisingly effective at priming the model to generate copyrighted content with no discernible side effects. Moreover, we discover that existing defenses are largely ineffective against our attack. Finally, we make the first attempt at mitigating copyright-infringement poisoning attacks by proposing a defense: ParrotTrap. We encourage the community to explore this emerging threat model further.
AdvPrefix: An Objective for Nuanced LLM Jailbreaks
Zhu, Sicheng, Amos, Brandon, Tian, Yuandong, Guo, Chuan, Evtimov, Ivan
Many jailbreak attacks on large language models (LLMs) rely on a common objective: making the model respond with the prefix "Sure, here is (harmful request)". While straightforward, this objective has two limitations: limited control over model behaviors, often resulting in incomplete or unrealistic responses, and a rigid format that hinders optimization. To address these limitations, we introduce AdvPrefix, a new prefix-forcing objective that enables more nuanced control over model behavior while being easy to optimize. Our objective leverages model-dependent prefixes, automatically selected based on two criteria: high prefilling attack success rates and low negative log-likelihood. It can further simplify optimization by using multiple prefixes for a single user request. AdvPrefix can integrate seamlessly into existing jailbreak attacks to improve their performance for free. For example, simply replacing GCG attack's target prefixes with ours on Llama-3 improves nuanced attack success rates from 14% to 80%, suggesting that current alignment struggles to generalize to unseen prefixes. Our work demonstrates the importance of jailbreak objectives in achieving nuanced jailbreaks.
GenARM: Reward Guided Generation with Autoregressive Reward Model for Test-time Alignment
Xu, Yuancheng, Sehwag, Udari Madhushani, Koppel, Alec, Zhu, Sicheng, An, Bang, Huang, Furong, Ganesh, Sumitra
Large Language Models (LLMs) exhibit impressive capabilities but require careful alignment with human preferences. Traditional training-time methods finetune LLMs using human preference datasets but incur significant training costs and require repeated training to handle diverse user preferences. Test-time alignment methods address this by using reward models (RMs) to guide frozen LLMs without retraining. However, existing test-time approaches rely on trajectory-level RMs which are designed to evaluate complete responses, making them unsuitable for autoregressive text generation that requires computing next-token rewards from partial responses. To address this, we introduce GenARM, a test-time alignment approach that leverages the Autoregressive Reward Model--a novel reward parametrization designed to predict next-token rewards for efficient and effective autoregressive generation. Theoretically, we demonstrate that this parametrization can provably guide frozen LLMs toward any distribution achievable by traditional RMs within the KL-regularized reinforcement learning framework. Experimental results show that GenARM significantly outperforms prior test-time alignment baselines and matches the performance of training-time methods. Additionally, GenARM enables efficient weak-to-strong guidance, aligning larger LLMs with smaller RMs without the high costs of training larger models. Furthermore, GenARM supports multi-objective alignment, allowing real-time trade-offs between preference dimensions and catering to diverse user preferences without retraining.
Triple-domain Feature Learning with Frequency-aware Memory Enhancement for Moving Infrared Small Target Detection
Duan, Weiwei, Ji, Luping, Chen, Shengjia, Zhu, Sicheng, Ye, Mao
Moving infrared small target detection presents significant challenges due to tiny target sizes and low contrast against backgrounds. Currently-existing methods primarily focus on extracting target features only from the spatial-temporal domain. For further enhancing feature representation, more information domains such as frequency are believed to be potentially valuable. To extend target feature learning, we propose a new Triple-domain Strategy (Tridos) with the frequency-aware memory enhancement on the spatial-temporal domain. In our scheme, it effectively detaches and enhances frequency features by a local-global frequency-aware module with Fourier transform. Inspired by the human visual system, our memory enhancement aims to capture the target spatial relations between video frames. Furthermore, it encodes temporal dynamics motion features via differential learning and residual enhancing. Additionally, we further design a residual compensation unit to reconcile possible cross-domain feature mismatches. To our best knowledge, our Tridos is the first work to explore target feature learning comprehensively in spatial-temporal-frequency domains. The extensive experiments on three datasets (DAUB, ITSDT-15K, and IRDST) validate that our triple-domain learning scheme could be obviously superior to state-of-the-art ones. Source codes are available at https://github.com/UESTC-nnLab/Tridos.
Benchmarking the Robustness of Image Watermarks
An, Bang, Ding, Mucong, Rabbani, Tahseen, Agrawal, Aakriti, Xu, Yuancheng, Deng, Chenghao, Zhu, Sicheng, Mohamed, Abdirisak, Wen, Yuxin, Goldstein, Tom, Huang, Furong
This paper investigates the weaknesses of image watermarking techniques. We present WAVES (Watermark Analysis Via Enhanced Stress-testing), a novel benchmark for assessing watermark robustness, overcoming the limitations of current evaluation methods.WAVES integrates detection and identification tasks, and establishes a standardized evaluation protocol comprised of a diverse range of stress tests. The attacks in WAVES range from traditional image distortions to advanced and novel variations of diffusive, and adversarial attacks. Our evaluation examines two pivotal dimensions: the degree of image quality degradation and the efficacy of watermark detection after attacks. We develop a series of Performance vs. Quality 2D plots, varying over several prominent image similarity metrics, which are then aggregated in a heuristically novel manner to paint an overall picture of watermark robustness and attack potency. Our comprehensive evaluation reveals previously undetected vulnerabilities of several modern watermarking algorithms. We envision WAVES as a toolkit for the future development of robust watermarking systems. The project is available at https://wavesbench.github.io/
AutoDAN: Interpretable Gradient-Based Adversarial Attacks on Large Language Models
Zhu, Sicheng, Zhang, Ruiyi, An, Bang, Wu, Gang, Barrow, Joe, Wang, Zichao, Huang, Furong, Nenkova, Ani, Sun, Tong
Safety alignment of Large Language Models (LLMs) can be compromised with manual jailbreak attacks and (automatic) adversarial attacks. Recent studies suggest that defending against these attacks is possible: adversarial attacks generate unlimited but unreadable gibberish prompts, detectable by perplexity-based filters; manual jailbreak attacks craft readable prompts, but their limited number due to the necessity of human creativity allows for easy blocking. In this paper, we show that these solutions may be too optimistic. We introduce AutoDAN, an interpretable, gradient-based adversarial attack that merges the strengths of both attack types. Guided by the dual goals of jailbreak and readability, AutoDAN optimizes and generates tokens one by one from left to right, resulting in readable prompts that bypass perplexity filters while maintaining high attack success rates. Notably, these prompts, generated from scratch using gradients, are interpretable and diverse, with emerging strategies commonly seen in manual jailbreak attacks. They also generalize to unforeseen harmful behaviors and transfer to black-box LLMs better than their unreadable counterparts when using limited training data or a single proxy model. Furthermore, we show the versatility of AutoDAN by automatically leaking system prompts using a customized objective. Our work offers a new way to red-team LLMs and understand jailbreak mechanisms via interpretability.
More Context, Less Distraction: Zero-shot Visual Classification by Inferring and Conditioning on Contextual Attributes
An, Bang, Zhu, Sicheng, Panaitescu-Liess, Michael-Andrei, Mummadi, Chaithanya Kumar, Huang, Furong
Vision-language models like CLIP are widely used in zero-shot image classification due to their ability to understand various visual concepts and natural language descriptions. However, how to fully leverage CLIP's unprecedented human-like understanding capabilities to achieve better performance is still an open question. This paper draws inspiration from the human visual perception process: when classifying an object, humans first infer contextual attributes (e.g., background and orientation) which help separate the foreground object from the background, and then classify the object based on this information. Inspired by it, we observe that providing CLIP with contextual attributes improves zero-shot image classification and mitigates reliance on spurious features. We also observe that CLIP itself can reasonably infer the attributes from an image. With these observations, we propose a training-free, two-step zero-shot classification method PerceptionCLIP. Given an image, it first infers contextual attributes (e.g., background) and then performs object classification conditioning on them. Our experiments show that PerceptionCLIP achieves better generalization, group robustness, and interpretability. For example, PerceptionCLIP with ViT-L/14 improves the worst group accuracy by 16.5% on the Waterbirds dataset and by 3.5% on CelebA.
On the Possibilities of AI-Generated Text Detection
Chakraborty, Souradip, Bedi, Amrit Singh, Zhu, Sicheng, An, Bang, Manocha, Dinesh, Huang, Furong
Our work addresses the critical issue of distinguishing text generated by Large Language Models (LLMs) from human-produced text, a task essential for numerous applications. Despite ongoing debate about the feasibility of such differentiation, we present evidence supporting its consistent achievability, except when human and machine text distributions are indistinguishable across their entire support. Drawing from information theory, we argue that as machine-generated text approximates human-like quality, the sample size needed for detection increases. We establish precise sample complexity bounds for detecting AI-generated text, laying groundwork for future research aimed at developing advanced, multi-sample detectors. Our empirical evaluations across multiple datasets (Xsum, Squad, IMDb, and Kaggle FakeNews) confirm the viability of enhanced detection methods. We test various state-of-the-art text generators, including GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-Chat-HF, and Llama-2-70B-Chat-HF, against detectors, including oBERTa-Large/Base-Detector, GPTZero. Our findings align with OpenAI's empirical data related to sequence length, marking the first theoretical substantiation for these observations.
Understanding the Generalization Benefit of Model Invariance from a Data Perspective
Zhu, Sicheng, An, Bang, Huang, Furong
Machine learning models that are developed to be invariant under certain types of data transformations have shown improved generalization in practice. However, a principled understanding of why invariance benefits generalization is limited. Given a dataset, there is often no principled way to select "suitable" data transformations under which model invariance guarantees better generalization. This paper studies the generalization benefit of model invariance by introducing the sample cover induced by transformations, i.e., a representative subset of a dataset that can approximately recover the whole dataset using transformations. For any data transformations, we provide refined generalization bounds for invariant models based on the sample cover. We also characterize the "suitability" of a set of data transformations by the sample covering number induced by transformations, i.e., the smallest size of its induced sample covers. We show that we may tighten the generalization bounds for "suitable" transformations that have a small sample covering number. In addition, our proposed sample covering number can be empirically evaluated and thus provides a guidance for selecting transformations to develop model invariance for better generalization. In experiments on multiple datasets, we evaluate sample covering numbers for some commonly used transformations and show that the smaller sample covering number for a set of transformations (e.g., the 3D-view transformation) indicates a smaller gap between the test and training error for invariant models, which verifies our propositions.