Goto

Collaborating Authors

 Zhu, Qing


Localization, balance and affinity: a stronger multifaceted collaborative salient object detector in remote sensing images

arXiv.org Artificial Intelligence

Despite significant advancements in salient object detection(SOD) in optical remote sensing images(ORSI), challenges persist due to the intricate edge structures of ORSIs and the complexity of their contextual relationships. Current deep learning approaches encounter difficulties in accurately identifying boundary features and lack efficiency in collaboratively modeling the foreground and background by leveraging contextual features. To address these challenges, we propose a stronger multifaceted collaborative salient object detector in ORSIs, termed LBA-MCNet, which incorporates aspects of localization, balance, and affinity. The network focuses on accurately locating targets, balancing detailed features, and modeling image-level global context information. Specifically, we design the Edge Feature Adaptive Balancing and Adjusting(EFABA) module for precise edge localization, using edge features to guide attention to boundaries and preserve spatial details. Moreover, we design the Global Distributed Affinity Learning(GDAL) module to model global context. It captures global context by generating an affinity map from the encoders final layer, ensuring effective modeling of global patterns. Additionally, deep supervision during deconvolution further enhances feature representation. Finally, we compared with 28 state of the art approaches on three publicly available datasets. The results clearly demonstrate the superiority of our method.


Daily Physical Activity Monitoring -- Adaptive Learning from Multi-source Motion Sensor Data

arXiv.org Artificial Intelligence

In healthcare applications, there is a growing need to develop machine learning models that use data from a single source, such as that from a wrist wearable device, to monitor physical activities, assess health risks, and provide immediate health recommendations or interventions. However, the limitation of using single-source data often compromises the model's accuracy, as it fails to capture the full scope of human activities. While a more comprehensive dataset can be gathered in a lab setting using multiple sensors attached to various body parts, this approach is not practical for everyday use due to the impracticality of wearing multiple sensors. To address this challenge, we introduce a transfer learning framework that optimizes machine learning models for everyday applications by leveraging multi-source data collected in a laboratory setting. We introduce a novel metric to leverage the inherent relationship between these multiple data sources, as they are all paired to capture aspects of the same physical activity. Through numerical experiments, our framework outperforms existing methods in classification accuracy and robustness to noise, offering a promising avenue for the enhancement of daily activity monitoring.


AllSpark: a multimodal spatiotemporal general model

arXiv.org Artificial Intelligence

For a long time, due to the high heterogeneity in structure and semantics among various spatiotemporal modal data, the joint interpretation of multimodal spatiotemporal data has been an extremely challenging problem. The primary challenge resides in striking a trade-off between the cohesion and autonomy of diverse modalities, and this trade-off exhibits a progressively nonlinear nature as the number of modalities expands. We introduce the Language as Reference Framework (LaRF), a fundamental principle for constructing a multimodal unified model, aiming to strike a trade-off between the cohesion and autonomy among different modalities. We propose a multimodal spatiotemporal general artificial intelligence model, called AllSpark. Our model integrates thirteen different modalities into a unified framework, including 1D (text, code), 2D (RGB, infrared, SAR, multispectral, hyperspectral, tables, graphs, trajectory, oblique photography), and 3D (point clouds, videos) modalities. To achieve modal cohesion, AllSpark uniformly maps diverse modal features to the language modality. In addition, we design modality-specific prompts to guide multi-modal large language models in accurately perceiving multimodal data. To maintain modality autonomy, AllSpark introduces modality-specific encoders to extract the tokens of various spatiotemporal modalities. And modal bridge is employed to achieve dimensional projection from each modality to the language modality. Finally, observing a gap between the model's interpretation and downstream tasks, we designed task heads to enhance the model's generalization capability on specific downstream tasks. Experiments indicate that AllSpark achieves competitive accuracy in modalities such as RGB and trajectory compared to state-of-the-art models.


Machine Learning Driven Sensitivity Analysis of E3SM Land Model Parameters for Wetland Methane Emissions

arXiv.org Artificial Intelligence

Methane (CH4) is the second most critical greenhouse gas after carbon dioxide, contributing to 16-25% of the observed atmospheric warming. Wetlands are the primary natural source of methane emissions globally. However, wetland methane emission estimates from biogeochemistry models contain considerable uncertainty. One of the main sources of this uncertainty arises from the numerous uncertain model parameters within various physical, biological, and chemical processes that influence methane production, oxidation, and transport. Sensitivity Analysis (SA) can help identify critical parameters for methane emission and achieve reduced biases and uncertainties in future projections. This study performs SA for 19 selected parameters responsible for critical biogeochemical processes in the methane module of the Energy Exascale Earth System Model (E3SM) land model (ELM). The impact of these parameters on various CH4 fluxes is examined at 14 FLUXNET- CH4 sites with diverse vegetation types. Given the extensive number of model simulations needed for global variance-based SA, we employ a machine learning (ML) algorithm to emulate the complex behavior of ELM methane biogeochemistry. ML enables the computational time to be shortened significantly from 6 CPU hours to 0.72 milliseconds, achieving reduced computational costs. We found that parameters linked to CH4 production and diffusion generally present the highest sensitivities despite apparent seasonal variation. Comparing simulated emissions from perturbed parameter sets against FLUXNET-CH4 observations revealed that better performances can be achieved at each site compared to the default parameter values. This presents a scope for further improving simulated emissions using parameter calibration with advanced optimization techniques like Bayesian optimization.


Towards A Robust Group-level Emotion Recognition via Uncertainty-Aware Learning

arXiv.org Artificial Intelligence

Group-level emotion recognition (GER) is an inseparable part of human behavior analysis, aiming to recognize an overall emotion in a multi-person scene. However, the existing methods are devoted to combing diverse emotion cues while ignoring the inherent uncertainties under unconstrained environments, such as congestion and occlusion occurring within a group. Additionally, since only group-level labels are available, inconsistent emotion predictions among individuals in one group can confuse the network. In this paper, we propose an uncertainty-aware learning (UAL) method to extract more robust representations for GER. By explicitly modeling the uncertainty of each individual, we utilize stochastic embedding drawn from a Gaussian distribution instead of deterministic point embedding. This representation captures the probabilities of different emotions and generates diverse predictions through this stochasticity during the inference stage. Furthermore, uncertainty-sensitive scores are adaptively assigned as the fusion weights of individuals' face within each group. Moreover, we develop an image enhancement module to enhance the model's robustness against severe noise. The overall three-branch model, encompassing face, object, and scene component, is guided by a proportional-weighted fusion strategy and integrates the proposed uncertainty-aware method to produce the final group-level output. Experimental results demonstrate the effectiveness and generalization ability of our method across three widely used databases.


Dynamic landslide susceptibility mapping over recent three decades to uncover variations in landslide causes in subtropical urban mountainous areas

arXiv.org Artificial Intelligence

Landslide susceptibility assessment (LSA) is of paramount importance in mitigating landslide risks. Recently, there has been a surge in the utilization of data-driven methods for predicting landslide susceptibility due to the growing availability of aerial and satellite data. Nonetheless, the rapid oscillations within the landslide-inducing environment (LIE), primarily due to significant changes in external triggers such as rainfall, pose difficulties for contemporary data-driven LSA methodologies to accommodate LIEs over diverse timespans. This study presents dynamic landslide susceptibility mapping that simply employs multiple predictive models for annual LSA. In practice, this will inevitably encounter small sample problems due to the limited number of landslide samples in certain years. Another concern arises owing to the majority of the existing LSA approaches train black-box models to fit distinct datasets, yet often failing in generalization and providing comprehensive explanations concerning the interactions between input features and predictions. Accordingly, we proposed to meta-learn representations with fast adaptation ability using a few samples and gradient updates; and apply SHAP for each model interpretation and landslide feature permutation. Additionally, we applied MT-InSAR for LSA result enhancement and validation. The chosen study area is Lantau Island, Hong Kong, where we conducted a comprehensive dynamic LSA spanning from 1992 to 2019. The model interpretation results demonstrate that the primary factors responsible for triggering landslides in Lantau Island are terrain slope and extreme rainfall. The results also indicate that the variation in landslide causes can be primarily attributed to extreme rainfall events, which result from global climate change, and the implementation of the Landslip Prevention and Mitigation Programme (LPMitP) by the Hong Kong government.


BCE-Net: Reliable Building Footprints Change Extraction based on Historical Map and Up-to-Date Images using Contrastive Learning

arXiv.org Artificial Intelligence

Automatic and periodic recompiling of building databases with up-to-date high-resolution images has become a critical requirement for rapidly developing urban environments. However, the architecture of most existing approaches for change extraction attempts to learn features related to changes but ignores objectives related to buildings. This inevitably leads to the generation of significant pseudo-changes, due to factors such as seasonal changes in images and the inclination of building fa\c{c}ades. To alleviate the above-mentioned problems, we developed a contrastive learning approach by validating historical building footprints against single up-to-date remotely sensed images. This contrastive learning strategy allowed us to inject the semantics of buildings into a pipeline for the detection of changes, which is achieved by increasing the distinguishability of features of buildings from those of non-buildings. In addition, to reduce the effects of inconsistencies between historical building polygons and buildings in up-to-date images, we employed a deformable convolutional neural network to learn offsets intuitively. In summary, we formulated a multi-branch building extraction method that identifies newly constructed and removed buildings, respectively. To validate our method, we conducted comparative experiments using the public Wuhan University building change detection dataset and a more practical dataset named SI-BU that we established. Our method achieved F1 scores of 93.99% and 70.74% on the above datasets, respectively. Moreover, when the data of the public dataset were divided in the same manner as in previous related studies, our method achieved an F1 score of 94.63%, which surpasses that of the state-of-the-art method.


Self-supervised remote sensing feature learning: Learning Paradigms, Challenges, and Future Works

arXiv.org Artificial Intelligence

Deep learning has achieved great success in learning features from massive remote sensing images (RSIs). To better understand the connection between feature learning paradigms (e.g., unsupervised feature learning (USFL), supervised feature learning (SFL), and self-supervised feature learning (SSFL)), this paper analyzes and compares them from the perspective of feature learning signals, and gives a unified feature learning framework. Under this unified framework, we analyze the advantages of SSFL over the other two learning paradigms in RSIs understanding tasks and give a comprehensive review of the existing SSFL work in RS, including the pre-training dataset, self-supervised feature learning signals, and the evaluation methods. We further analyze the effect of SSFL signals and pre-training data on the learned features to provide insights for improving the RSI feature learning. Finally, we briefly discuss some open problems and possible research directions.


Reviewing continual learning from the perspective of human-level intelligence

arXiv.org Artificial Intelligence

Humans' continual learning (CL) ability is closely related to Stability Versus Plasticity Dilemma that describes how humans achieve ongoing learning capacity and preservation for learned information. The notion of CL has always been present in artificial intelligence (AI) since its births. This paper proposes a comprehensive review of CL. Different from previous reviews that mainly focus on the catastrophic forgetting phenomenon in CL, this paper surveys CL from a more macroscopic perspective based on the Stability Versus Plasticity mechanism. Analogous to biological counterpart, "smart" AI agents are supposed to i) remember previously learned information (information retrospection); ii) infer on new information continuously (information prospection:); iii) transfer useful information (information transfer), to achieve high-level CL. According to the taxonomy, evaluation metrics, algorithms, applications as well as some open issues are then introduced. Our main contributions concern i) rechecking CL from the level of artificial general intelligence; ii) providing a detailed and extensive overview on CL topics; iii) presenting some novel ideas on the potential development of CL.


Meta-learning an Intermediate Representation for Few-shot Block-wise Prediction of Landslide Susceptibility

arXiv.org Artificial Intelligence

Predicting a landslide susceptibility map (LSM) is essential for risk recognition and disaster prevention. Despite the successful application of data-driven prediction approaches, current data-driven methods generally apply a single global model to predict the LSM for an entire target region. However, we argue that, in complex circumstances, especially in large-scale areas, each part of the region holds different landslide-inducing environments, and therefore, should be predicted individually with respective models. In this study, target scenarios were segmented into blocks for individual analysis using topographical factors. But simply conducting training and testing using limited samples within each block is hardly possible for a satisfactory LSM prediction, due to the adverse effect of \textit{overfitting}. To solve the problems, we train an intermediate representation by the meta-learning paradigm, which is superior for capturing information from LSM tasks in order to generalize proficiently. We chose this based on the hypothesis that there are more general concepts among LSM tasks that are sensitive to variations in input features. Thus, using the intermediate representation, we can easily adapt the model for different blocks or even unseen tasks using few exemplar samples. Experimental results on two study areas demonstrated the validity of our block-wise analysis in large scenarios and revealed the top few-shot adaption performances of the proposed methods.