Goto

Collaborating Authors

 Zhu, Mingwei


The intelligent prediction and assessment of financial information risk in the cloud computing model

arXiv.org Artificial Intelligence

Cloud computing (cloud computing) is a kind of distributed computing, referring to the network "cloud" will be a huge data calculation and processing program into countless small programs, and then, through the system composed of multiple servers to process and analyze these small programs to get the results and return to the user. This report explores the intersection of cloud computing and financial information processing, identifying risks and challenges faced by financial institutions in adopting cloud technology. It discusses the need for intelligent solutions to enhance data processing efficiency and accuracy while addressing security and privacy concerns. Drawing on regulatory frameworks, the report proposes policy recommendations to mitigate concentration risks associated with cloud computing in the financial industry. By combining intelligent forecasting and evaluation technologies with cloud computing models, the study aims to provide effective solutions for financial data processing and management, facilitating the industry's transition towards digital transformation.


Intelligent Classification and Personalized Recommendation of E-commerce Products Based on Machine Learning

arXiv.org Artificial Intelligence

With the rapid evolution of the Internet and the exponential proliferation of information, users encounter information overload and the conundrum of choice. Personalized recommendation systems play a pivotal role in alleviating this burden by aiding users in filtering and selecting information tailored to their preferences and requirements. Such systems not only enhance user experience and satisfaction but also furnish opportunities for businesses and platforms to augment user engagement, sales, and advertising efficacy.This paper undertakes a comparative analysis between the operational mechanisms of traditional e-commerce commodity classification systems and personalized recommendation systems. It delineates the significance and application of personalized recommendation systems across e-commerce, content information, and media domains. Furthermore, it delves into the challenges confronting personalized recommendation systems in e-commerce, including data privacy, algorithmic bias, scalability, and the cold start problem. Strategies to address these challenges are elucidated.Subsequently, the paper outlines a personalized recommendation system leveraging the BERT model and nearest neighbor algorithm, specifically tailored to address the exigencies of the eBay e-commerce platform. The efficacy of this recommendation system is substantiated through manual evaluation, and a practical application operational guide and structured output recommendation results are furnished to ensure the system's operability and scalability.


VL-CheckList: Evaluating Pre-trained Vision-Language Models with Objects, Attributes and Relations

arXiv.org Artificial Intelligence

Vision-Language Pretraining (VLP) models have recently successfully facilitated many cross-modal downstream tasks. Most existing works evaluated their systems by comparing the fine-tuned downstream task performance. However, only average downstream task accuracy provides little information about the pros and cons of each VLP method, let alone provides insights on how the community can improve the systems in the future. Inspired by the CheckList for testing natural language processing, we exploit VL-CheckList, a novel framework to understand the capabilities of VLP models. The proposed method divides the image-texting ability of a VLP model into three categories: objects, attributes, and relations, and uses a novel taxonomy to further break down these three aspects. We conduct comprehensive studies to analyze seven recently popular VLP models via the proposed framework. Results confirm the effectiveness of the proposed method by revealing fine-grained differences among the compared models that were not visible from downstream task-only evaluation. Further results show promising research direction in building better VLP models. Our data and code are available at: https://github.com/om-ai-lab/VL-CheckList.