Goto

Collaborating Authors

 Zhu, Mingcheng


Bridging Data Gaps in Healthcare: A Scoping Review of Transfer Learning in Biomedical Data Analysis

arXiv.org Artificial Intelligence

Clinical and biomedical research in low-resource settings often faces significant challenges due to the need for high-quality data with sufficient sample sizes to construct effective models. These constraints hinder robust model training and prompt researchers to seek methods for leveraging existing knowledge from related studies to support new research efforts. Transfer learning (TL), a machine learning technique, emerges as a powerful solution by utilizing knowledge from pre-trained models to enhance the performance of new models, offering promise across various healthcare domains. Despite its conceptual origins in the 1990s, the application of TL in medical research has remained limited, especially beyond image analysis. In our review of TL applications in structured clinical and biomedical data, we screened 3,515 papers, with 55 meeting the inclusion criteria. Among these, only 2% (one out of 55) utilized external studies, and 7% (four out of 55) addressed scenarios involving multi-site collaborations with privacy constraints. To achieve actionable TL with structured medical data while addressing regional disparities, inequality, and privacy constraints in healthcare research, we advocate for the careful identification of appropriate source data and models, the selection of suitable TL frameworks, and the validation of TL models with proper baselines.


DTR-Bench: An in silico Environment and Benchmark Platform for Reinforcement Learning Based Dynamic Treatment Regime

arXiv.org Artificial Intelligence

Reinforcement learning (RL) has garnered increasing recognition for its potential to optimise dynamic treatment regimes (DTRs) in personalised medicine, particularly for drug dosage prescriptions and medication recommendations. However, a significant challenge persists: the absence of a unified framework for simulating diverse healthcare scenarios and a comprehensive analysis to benchmark the effectiveness of RL algorithms within these contexts. To address this gap, we introduce \textit{DTR-Bench}, a benchmarking platform comprising four distinct simulation environments tailored to common DTR applications, including cancer chemotherapy, radiotherapy, glucose management in diabetes, and sepsis treatment. We evaluate various state-of-the-art RL algorithms across these settings, particularly highlighting their performance amidst real-world challenges such as pharmacokinetic/pharmacodynamic (PK/PD) variability, noise, and missing data. Our experiments reveal varying degrees of performance degradation among RL algorithms in the presence of noise and patient variability, with some algorithms failing to converge. Additionally, we observe that using temporal observation representations does not consistently lead to improved performance in DTR settings. Our findings underscore the necessity of developing robust, adaptive RL algorithms capable of effectively managing these complexities to enhance patient-specific healthcare. We have open-sourced our benchmark and code at https://github.com/GilesLuo/DTR-Bench.