Goto

Collaborating Authors

 Zhu, Jia


CUHK at SemEval-2020 Task 4: CommonSense Explanation, Reasoning and Prediction with Multi-task Learning

arXiv.org Artificial Intelligence

This paper describes our system submitted to task 4 of SemEval 2020: Commonsense Validation and Explanation (ComVE) which consists of three sub-tasks. The challenge is to directly validate whether the system can recognize natural language statements that make sense from those that do not, and also require to generate reasonable explanation. Based on BERT architecture with multi-task setting, we propose an effective and interpretable "Explain, Reason and Predict" (ERP) system to solve the three sub-tasks about commonsense: (a) Validation, and (c) Explanation, (b) Reasoning, following the order of the competition. Inspired by cognitive studies of common sense, our system first generate a reason or understanding of the sentences and then choose which one statement makes sense, which is achieved by multi-task learning. The rational experiment validates our assumption and boost the performance. During the post-evaluation, our system has reached 92.9% accuracy in subtask A (rank 11), 89.7% accuracy in subtask B (rank 8), and BLEU score of 12.9 in subtask C (rank 9)


Soft-Gated Warping-GAN for Pose-Guided Person Image Synthesis

Neural Information Processing Systems

Despite remarkable advances in image synthesis research, existing works often fail in manipulating images under the context of large geometric transformations. Synthesizing person images conditioned on arbitrary poses is one of the most representative examples where the generation quality largely relies on the capability of identifying and modeling arbitrary transformations on different body parts. Current generative models are often built on local convolutions and overlook the key challenges (e.g. heavy occlusions, different views or dramatic appearance changes) when distinct geometric changes happen for each part, caused by arbitrary pose manipulations. This paper aims to resolve these challenges induced by geometric variability and spatial displacements via a new Soft-Gated Warping Generative Adversarial Network (Warping-GAN), which is composed of two stages: 1) it first synthesizes a target part segmentation map given a target pose, which depicts the region-level spatial layouts for guiding image synthesis with higher-level structure constraints; 2) the Warping-GAN equipped with a soft-gated warping-block learns feature-level mapping to render textures from the original image into the generated segmentation map. Warping-GAN is capable of controlling different transformation degrees given distinct target poses. Moreover, the proposed warping-block is light-weight and flexible enough to be injected into any networks. Human perceptual studies and quantitative evaluations demonstrate the superiority of our Warping-GAN that significantly outperforms all existing methods on two large datasets.


Soft-Gated Warping-GAN for Pose-Guided Person Image Synthesis

Neural Information Processing Systems

Despite remarkable advances in image synthesis research, existing works often fail in manipulating images under the context of large geometric transformations. Synthesizing person images conditioned on arbitrary poses is one of the most representative examples where the generation quality largely relies on the capability of identifying and modeling arbitrary transformations on different body parts. Current generative models are often built on local convolutions and overlook the key challenges (e.g. heavy occlusions, different views or dramatic appearance changes) when distinct geometric changes happen for each part, caused by arbitrary pose manipulations. This paper aims to resolve these challenges induced by geometric variability and spatial displacements via a new Soft-Gated Warping Generative Adversarial Network (Warping-GAN), which is composed of two stages: 1) it first synthesizes a target part segmentation map given a target pose, which depicts the region-level spatial layouts for guiding image synthesis with higher-level structure constraints; 2) the Warping-GAN equipped with a soft-gated warping-block learns feature-level mapping to render textures from the original image into the generated segmentation map. Warping-GAN is capable of controlling different transformation degrees given distinct target poses. Moreover, the proposed warping-block is light-weight and flexible enough to be injected into any networks. Human perceptual studies and quantitative evaluations demonstrate the superiority of our Warping-GAN that significantly outperforms all existing methods on two large datasets.


A Semi-Supervised Network Embedding Model for Protein Complexes Detection

AAAI Conferences

Protein complex is a group of associated polypeptide chains which plays essential roles in biological process. Given a graph representing protein-protein interactions (PPI) network, it is critical but non-trivial to detect protein complexes.In this paper, we propose a semi-supervised network embedding model by adopting graph convolutional networks to effectively detect densely connected subgraphs. We conduct extensive experiment on two popular PPI networks with various data sizes and densities. The experimental results show our approach achieves state-of-the-art performance.


Generative Adversarial Network for Abstractive Text Summarization

AAAI Conferences

In this paper, we propose an adversarial process for abstractive text summarization, in which we simultaneously train a generative model G and a discriminative model D. In particular, we build the generator G as an agent of reinforcement learning, which takes the raw text as input and predicts the abstractive summarization. We also build a discriminator which attempts to distinguish the generated summary from the ground truth summary. Extensive experiments demonstrate that our model achieves competitive ROUGE scores with the state-of-the-art methods on CNN/Daily Mail dataset. Qualitatively, we show that our model is able to generate more abstractive, readable and diverse summaries.


A New Benchmark and Evaluation Schema for Chinese Typo Detection and Correction

AAAI Conferences

Despite the vast amount of research related to Chinese typo detection, we still lack a publicly available benchmark dataset for evaluation. Furthermore, no precise evaluation schema for Chinese typo detection has been defined. In response to these problems: (1) we release a benchmark dataset to assist research on Chinese typo correction; (2) we present an evaluation schema which was adopted in our NLPTEA 2017 Shared Task on Chinese Spelling Check; and (3) we report new improvements to our Chinese typo detection system ACT.