Goto

Collaborating Authors

 Zhu, Hongyuan


Towards Rich Emotions in 3D Avatars: A Text-to-3D Avatar Generation Benchmark

arXiv.org Artificial Intelligence

Producing emotionally dynamic 3D facial avatars with text derived from spoken words (Emo3D) has been a pivotal research topic in 3D avatar generation. While progress has been made in general-purpose 3D avatar generation, the exploration of generating emotional 3D avatars remains scarce, primarily due to the complexities of identifying and rendering rich emotions from spoken words. This paper reexamines Emo3D generation and draws inspiration from human processes, breaking down Emo3D into two cascading steps: Text-to-3D Expression Mapping (T3DEM) and 3D Avatar Rendering (3DAR). T3DEM is the most crucial step in determining the quality of Emo3D generation and encompasses three key challenges: Expression Diversity, Emotion-Content Consistency, and Expression Fluidity. To address these challenges, we introduce a novel benchmark to advance research in Emo3D generation. First, we present EmoAva, a large-scale, high-quality dataset for T3DEM, comprising 15,000 text-to-3D expression mappings that characterize the aforementioned three challenges in Emo3D generation. Furthermore, we develop various metrics to effectively evaluate models against these identified challenges. Next, to effectively model the consistency, diversity, and fluidity of human expressions in the T3DEM step, we propose the Continuous Text-to-Expression Generator, which employs an autoregressive Conditional Variational Autoencoder for expression code generation, enhanced with Latent Temporal Attention and Expression-wise Attention mechanisms. Finally, to further enhance the 3DAR step on rendering higher-quality subtle expressions, we present the Globally-informed Gaussian Avatar (GiGA) model. GiGA incorporates a global information mechanism into 3D Gaussian representations, enabling the capture of subtle micro-expressions and seamless transitions between emotional states.


Synergistic Dual Spatial-aware Generation of Image-to-Text and Text-to-Image

arXiv.org Artificial Intelligence

In the visual spatial understanding (VSU) area, spatial image-to-text (SI2T) and spatial text-to-image (ST2I) are two fundamental tasks that appear in dual form. Existing methods for standalone SI2T or ST2I perform imperfectly in spatial understanding, due to the difficulty of 3D-wise spatial feature modeling. In this work, we consider modeling the SI2T and ST2I together under a dual learning framework. During the dual framework, we then propose to represent the 3D spatial scene features with a novel 3D scene graph (3DSG) representation that can be shared and beneficial to both tasks. Further, inspired by the intuition that the easier 3D$\to$image and 3D$\to$text processes also exist symmetrically in the ST2I and SI2T, respectively, we propose the Spatial Dual Discrete Diffusion (SD$^3$) framework, which utilizes the intermediate features of the 3D$\to$X processes to guide the hard X$\to$3D processes, such that the overall ST2I and SI2T will benefit each other. On the visual spatial understanding dataset VSD, our system outperforms the mainstream T2I and I2T methods significantly. Further in-depth analysis reveals how our dual learning strategy advances.


PointCloud-Text Matching: Benchmark Datasets and a Baseline

arXiv.org Artificial Intelligence

In this paper, we present and study a new instance-level retrieval task: PointCloud-Text Matching~(PTM), which aims to find the exact cross-modal instance that matches a given point-cloud query or text query. PTM could be applied to various scenarios, such as indoor/urban-canyon localization and scene retrieval. However, there exists no suitable and targeted dataset for PTM in practice. Therefore, we construct three new PTM benchmark datasets, namely 3D2T-SR, 3D2T-NR, and 3D2T-QA. We observe that the data is challenging and with noisy correspondence due to the sparsity, noise, or disorder of point clouds and the ambiguity, vagueness, or incompleteness of texts, which make existing cross-modal matching methods ineffective for PTM. To tackle these challenges, we propose a PTM baseline, named Robust PointCloud-Text Matching method (RoMa). RoMa consists of two modules: a Dual Attention Perception module (DAP) and a Robust Negative Contrastive Learning module (RNCL). Specifically, DAP leverages token-level and feature-level attention to adaptively focus on useful local and global features, and aggregate them into common representations, thereby reducing the adverse impact of noise and ambiguity. To handle noisy correspondence, RNCL divides negative pairs, which are much less error-prone than positive pairs, into clean and noisy subsets, and assigns them forward and reverse optimization directions respectively, thus enhancing robustness against noisy correspondence. We conduct extensive experiments on our benchmarks and demonstrate the superiority of our RoMa.


Contributing Dimension Structure of Deep Feature for Coreset Selection

arXiv.org Artificial Intelligence

Coreset selection seeks to choose a subset of crucial training samples for efficient learning. It has gained traction in deep learning, particularly with the surge in training dataset sizes. Sample selection hinges on two main aspects: a sample's representation in enhancing performance and the role of sample diversity in averting overfitting. Existing methods typically measure both the representation and diversity of data based on similarity metrics, such as L2-norm. They have capably tackled representation via distribution matching guided by the similarities of features, gradients, or other information between data. However, the results of effectively diverse sample selection are mired in sub-optimality. This is because the similarity metrics usually simply aggregate dimension similarities without acknowledging disparities among the dimensions that significantly contribute to the final similarity. As a result, they fall short of adequately capturing diversity. To address this, we propose a feature-based diversity constraint, compelling the chosen subset to exhibit maximum diversity. Our key lies in the introduction of a novel Contributing Dimension Structure (CDS) metric. Different from similarity metrics that measure the overall similarity of high-dimensional features, our CDS metric considers not only the reduction of redundancy in feature dimensions, but also the difference between dimensions that contribute significantly to the final similarity. We reveal that existing methods tend to favor samples with similar CDS, leading to a reduced variety of CDS types within the coreset and subsequently hindering model performance. In response, we enhance the performance of five classical selection methods by integrating the CDS constraint. Our experiments on three datasets demonstrate the general effectiveness of the proposed method in boosting existing methods.


Direct Distillation between Different Domains

arXiv.org Artificial Intelligence

Knowledge Distillation (KD) aims to learn a compact student network using knowledge from a large pre-trained teacher network, where both networks are trained on data from the same distribution. However, in practical applications, the student network may be required to perform in a new scenario (i.e., the target domain), which usually exhibits significant differences from the known scenario of the teacher network (i.e., the source domain). The traditional domain adaptation techniques can be integrated with KD in a two-stage process to bridge the domain gap, but the ultimate reliability of two-stage approaches tends to be limited due to the high computational consumption and the additional errors accumulated from both stages. To solve this problem, we propose a new one-stage method dubbed ``Direct Distillation between Different Domains" (4Ds). We first design a learnable adapter based on the Fourier transform to separate the domain-invariant knowledge from the domain-specific knowledge. Then, we build a fusion-activation mechanism to transfer the valuable domain-invariant knowledge to the student network, while simultaneously encouraging the adapter within the teacher network to learn the domain-specific knowledge of the target data. As a result, the teacher network can effectively transfer categorical knowledge that aligns with the target domain of the student network. Intensive experiments on various benchmark datasets demonstrate that our proposed 4Ds method successfully produces reliable student networks and outperforms state-of-the-art approaches.


Antenna Response Consistency Driven Self-supervised Learning for WIFI-based Human Activity Recognition

arXiv.org Artificial Intelligence

Self-supervised learning (SSL) for WiFi-based human activity recognition (HAR) holds great promise due to its ability to address the challenge of insufficient labeled data. However, directly transplanting SSL algorithms, especially contrastive learning, originally designed for other domains to CSI data, often fails to achieve the expected performance. We attribute this issue to the inappropriate alignment criteria, which disrupt the semantic distance consistency between the feature space and the input space. To address this challenge, we introduce \textbf{A}ntenna \textbf{R}esponse \textbf{C}onsistency (ARC) as a solution to define proper alignment criteria. ARC is designed to retain semantic information from the input space while introducing robustness to real-world noise. Moreover, we substantiate the effectiveness of ARC through a comprehensive set of experiments, demonstrating its capability to enhance the performance of self-supervised learning for WiFi-based HAR by achieving an increase of over 5\% in accuracy in most cases and achieving a best accuracy of 94.97\%.


Exploiting Semantic Role Contextualized Video Features for Multi-Instance Text-Video Retrieval EPIC-KITCHENS-100 Multi-Instance Retrieval Challenge 2022

arXiv.org Artificial Intelligence

In this report, we present our approach for EPIC-KITCHENS-100 Multi-Instance Retrieval Challenge 2022. We first parse sentences into semantic roles corresponding to verbs and nouns; then utilize self-attentions to exploit semantic role contextualized video features along with textual features via triplet losses in multiple embedding spaces. Our method overpasses the strong baseline in normalized Discounted Cumulative Gain (nDCG), which is more valuable for semantic similarity. Our submission is ranked 3rd for nDCG and ranked 4th for mAP.


Multi-view Vision-Prompt Fusion Network: Can 2D Pre-trained Model Boost 3D Point Cloud Data-scarce Learning?

arXiv.org Artificial Intelligence

Point cloud based 3D deep model has wide applications in many applications such as autonomous driving, house robot, and so on. Inspired by the recent prompt learning in natural language processing, this work proposes a novel Multi-view Vision-Prompt Fusion Network (MvNet) for few-shot 3D point cloud classification. MvNet investigates the possibility of leveraging the off-the-shelf 2D pre-trained models to achieve the few-shot classification, which can alleviate the over-dependence issue of the existing baseline models towards the large-scale annotated 3D point cloud data. Specifically, MvNet first encodes a 3D point cloud into multi-view image features for a number of different views. Then, a novel multi-view prompt fusion module is developed to effectively fuse information from different views to bridge the gap between 3D point cloud data and 2D pre-trained models. A set of 2D image prompts can then be derived to better describe the suitable prior knowledge for a large-scale pre-trained image model for few-shot 3D point cloud classification. Extensive experiments on ModelNet, ScanObjectNN, and ShapeNet datasets demonstrate that MvNet achieves new state-of-the-art performance for 3D few-shot point cloud image classification. The source code of this work will be available soon.


Self-Supervised Learning for WiFi CSI-Based Human Activity Recognition: A Systematic Study

arXiv.org Artificial Intelligence

Recently, with the advancement of the Internet of Things (IoT), WiFi CSI-based HAR has gained increasing attention from academic and industry communities. By integrating the deep learning technology with CSI-based HAR, researchers achieve state-of-the-art performance without the need of expert knowledge. However, the scarcity of labeled CSI data remains the most prominent challenge when applying deep learning models in the context of CSI-based HAR due to the privacy and incomprehensibility of CSI-based HAR data. On the other hand, SSL has emerged as a promising approach for learning meaningful representations from data without heavy reliance on labeled examples. Therefore, considerable efforts have been made to address the challenge of insufficient data in deep learning by leveraging SSL algorithms. In this paper, we undertake a comprehensive inventory and analysis of the potential held by different categories of SSL algorithms, including those that have been previously studied and those that have not yet been explored, within the field. We provide an in-depth investigation of SSL algorithms in the context of WiFi CSI-based HAR. We evaluate four categories of SSL algorithms using three publicly available CSI HAR datasets, each encompassing different tasks and environmental settings. To ensure relevance to real-world applications, we design performance metrics that align with specific requirements. Furthermore, our experimental findings uncover several limitations and blind spots in existing work, highlighting the barriers that need to be addressed before SSL can be effectively deployed in real-world WiFi-based HAR applications. Our results also serve as a practical guideline for industry practitioners and provide valuable insights for future research endeavors in this field.


Semantic Role Aware Correlation Transformer for Text to Video Retrieval

arXiv.org Artificial Intelligence

With the emergence of social media, voluminous video clips are uploaded every day, and retrieving the most relevant visual content with a language query becomes critical. Most approaches aim to learn a joint embedding space for plain textual and visual contents without adequately exploiting their intra-modality structures and inter-modality correlations. This paper proposes a novel transformer that explicitly disentangles the text and video into semantic roles of objects, spatial contexts and temporal contexts with an attention scheme to learn the intra- and inter-role correlations among the three roles to discover discriminative features for matching at different levels. The preliminary results on popular YouCook2 indicate that our approach surpasses a current state-of-the-art method, with a high margin in all metrics. It also overpasses two SOTA methods in terms of two metrics.