Zhu, Hanwei
AI-generated Image Quality Assessment in Visual Communication
Tian, Yu, Li, Yixuan, Chen, Baoliang, Zhu, Hanwei, Wang, Shiqi, Kwong, Sam
Assessing the quality of artificial intelligence-generated images (AIGIs) plays a crucial role in their application in real-world scenarios. However, traditional image quality assessment (IQA) algorithms primarily focus on low-level visual perception, while existing IQA works on AIGIs overemphasize the generated content itself, neglecting its effectiveness in real-world applications. To bridge this gap, we propose AIGI-VC, a quality assessment database for AI-Generated Images in Visual Communication, which studies the communicability of AIGIs in the advertising field from the perspectives of information clarity and emotional interaction. The dataset consists of 2,500 images spanning 14 advertisement topics and 8 emotion types. It provides coarse-grained human preference annotations and fine-grained preference descriptions, benchmarking the abilities of IQA methods in preference prediction, interpretation, and reasoning. We conduct an empirical study of existing representative IQA methods and large multi-modal models on the AIGI-VC dataset, uncovering their strengths and weaknesses.
2AFC Prompting of Large Multimodal Models for Image Quality Assessment
Zhu, Hanwei, Sui, Xiangjie, Chen, Baoliang, Liu, Xuelin, Chen, Peilin, Fang, Yuming, Wang, Shiqi
While abundant research has been conducted on improving high-level visual understanding and reasoning capabilities of large multimodal models~(LMMs), their visual quality assessment~(IQA) ability has been relatively under-explored. Here we take initial steps towards this goal by employing the two-alternative forced choice~(2AFC) prompting, as 2AFC is widely regarded as the most reliable way of collecting human opinions of visual quality. Subsequently, the global quality score of each image estimated by a particular LMM can be efficiently aggregated using the maximum a posterior estimation. Meanwhile, we introduce three evaluation criteria: consistency, accuracy, and correlation, to provide comprehensive quantifications and deeper insights into the IQA capability of five LMMs. Extensive experiments show that existing LMMs exhibit remarkable IQA ability on coarse-grained quality comparison, but there is room for improvement on fine-grained quality discrimination. The proposed dataset sheds light on the future development of IQA models based on LMMs. The codes will be made publicly available at https://github.com/h4nwei/2AFC-LMMs.