Zhu, Erkang
AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation
Wu, Qingyun, Bansal, Gagan, Zhang, Jieyu, Wu, Yiran, Li, Beibin, Zhu, Erkang, Jiang, Li, Zhang, Xiaoyun, Zhang, Shaokun, Liu, Jiale, Awadallah, Ahmed Hassan, White, Ryen W, Burger, Doug, Wang, Chi
AutoGen is an open-source framework that allows developers to build LLM applications via multiple agents that can converse with each other to accomplish tasks. AutoGen agents are customizable, conversable, and can operate in various modes that employ combinations of LLMs, human inputs, and tools. Using AutoGen, developers can also flexibly define agent interaction behaviors. Both natural language and computer code can be used to program flexible conversation patterns for different applications. AutoGen serves as a generic infrastructure to build diverse applications of various complexities and LLM capacities. Empirical studies demonstrate the effectiveness of the framework in many example applications, with domains ranging from mathematics, coding, question answering, operations research, online decision-making, entertainment, etc.
An Empirical Study on Challenging Math Problem Solving with GPT-4
Wu, Yiran, Jia, Feiran, Zhang, Shaokun, Li, Hangyu, Zhu, Erkang, Wang, Yue, Lee, Yin Tat, Peng, Richard, Wu, Qingyun, Wang, Chi
Employing Large Language Models (LLMs) to address mathematical problems is an intriguing research endeavor, considering the abundance of math problems expressed in natural language across numerous science and engineering fields. While several prior works have investigated solving elementary mathematics using LLMs, this work explores the frontier of using GPT-4 for solving more complex and challenging math problems. We evaluate various ways of using GPT-4. Some of them are adapted from existing work, and one is MathChat, a conversational problem-solving framework newly proposed in this work. We perform the evaluation on difficult high school competition problems from the MATH dataset, which shows the advantage of the proposed conversational approach.