Goto

Collaborating Authors

 Zhu, Conghui


MuSC: Improving Complex Instruction Following with Multi-granularity Self-Contrastive Training

arXiv.org Artificial Intelligence

Complex instruction-following with elaborate constraints is imperative for Large Language Models (LLMs). While existing methods have constructed data for complex instruction alignment, they all rely on a more advanced model, especially GPT-4, limiting their application. In this paper, we propose a Multi-granularity Self-Contrastive Training (MuSC) framework, to improve the complex instruction alignment without relying on a stronger model. Our method is conducted on both coarse and fine granularity. On coarse-granularity, we construct constraint-aware preference data based on instruction decomposition and recombination. On fine-granularity, we perform token-aware preference optimization with dynamic token-level supervision. Our method is evaluated on open-sourced models, and experiment results show our method achieves significant improvement on both complex and general instruction-following benchmarks, surpassing previous self-alignment methods.


DuplexMamba: Enhancing Real-time Speech Conversations with Duplex and Streaming Capabilities

arXiv.org Artificial Intelligence

Real-time speech conversation is essential for natural and efficient human-machine interactions, requiring duplex and streaming capabilities. Traditional Transformer-based conversational chatbots operate in a turn-based manner and exhibit quadratic computational complexity that grows as the input size increases. In this paper, we propose DuplexMamba, a Mamba-based end-to-end multimodal duplex model for speech-to-text conversation. DuplexMamba enables simultaneous input processing and output generation, dynamically adjusting to support real-time streaming. Specifically, we develop a Mamba-based speech encoder and adapt it with a Mamba-based language model. Furthermore, we introduce a novel duplex decoding strategy that enables DuplexMamba to process input and generate output simultaneously. Experimental results demonstrate that DuplexMamba successfully implements duplex and streaming capabilities while achieving performance comparable to several recently developed Transformer-based models in automatic speech recognition (ASR) tasks and voice assistant benchmark evaluations.


SEO: Stochastic Experience Optimization for Large Language Models

arXiv.org Artificial Intelligence

Large Language Models (LLMs) can benefit from useful experiences to improve their performance on specific tasks. However, finding helpful experiences for different LLMs is not obvious, since it is unclear what experiences suit specific LLMs. Previous studies intended to automatically find useful experiences using LLMs, while it is difficult to ensure the effectiveness of the obtained experience. In this paper, we propose Stochastic Experience Optimization (SEO), an iterative approach that finds optimized model-specific experience without modifying model parameters through experience update in natural language. In SEO, we propose a stochastic validation method to ensure the update direction of experience, avoiding unavailing updates. Experimental results on three tasks for three LLMs demonstrate that experiences optimized by SEO can achieve consistently improved performance. Further analysis indicates that SEO-optimized experience can generalize to out-of-distribution data, boosting the performance of LLMs on similar tasks.


Mitigating the Bias of Large Language Model Evaluation

arXiv.org Artificial Intelligence

Recently, there has been a trend of evaluating the Large Language Model (LLM) quality in the flavor of LLM-as-a-Judge, namely leveraging another LLM to evaluate the current output quality. However, existing judges are proven to be biased, namely they would favor answers which present better superficial quality (such as verbosity, fluency) while ignoring the instruction following ability. In this work, we propose systematic research about the bias of LLM-as-a-Judge. Specifically, for closed-source judge models, we apply calibration to mitigate the significance of superficial quality, both on probability level and prompt level. For open-source judge models, we propose to mitigate the bias by contrastive training, with curated negative samples that deviate from instruction but present better superficial quality. We apply our methods on the bias evaluation benchmark, and experiment results show our methods mitigate the bias by a large margin while maintaining a satisfactory evaluation accuracy.


LoRA-drop: Efficient LoRA Parameter Pruning based on Output Evaluation

arXiv.org Artificial Intelligence

Low-Rank Adaptation (LoRA) introduces auxiliary parameters for each layer to fine-tune the pre-trained model under limited computing resources. But it still faces challenges of resource consumption when scaling up to larger models. Previous studies employ pruning techniques by evaluating the importance of LoRA parameters for different layers to address the problem. However, these efforts only analyzed parameter features to evaluate their importance. Indeed, the output of LoRA related to the parameters and data is the factor that directly impacts the frozen model. To this end, we propose LoRA-drop which evaluates the importance of the parameters by analyzing the LoRA output. We retain LoRA for important layers and the LoRA of the other layers share the same parameters. Abundant experiments on NLU and NLG tasks demonstrate the effectiveness of LoRA-drop.


Reliable Evaluations for Natural Language Inference based on a Unified Cross-dataset Benchmark

arXiv.org Artificial Intelligence

Recent studies show that crowd-sourced Natural Language Inference (NLI) datasets may suffer from significant biases like annotation artifacts. Models utilizing these superficial clues gain mirage advantages on the in-domain testing set, which makes the evaluation results over-estimated. The lack of trustworthy evaluation settings and benchmarks stalls the progress of NLI research. In this paper, we propose to assess a model's trustworthy generalization performance with cross-datasets evaluation. We present a new unified cross-datasets benchmark with 14 NLI datasets, and re-evaluate 9 widely-used neural network-based NLI models as well as 5 recently proposed debiasing methods for annotation artifacts. Our proposed evaluation scheme and experimental baselines could provide a basis to inspire future reliable NLI research.


Demographics Should Not Be the Reason of Toxicity: Mitigating Discrimination in Text Classifications with Instance Weighting

arXiv.org Machine Learning

With the recent proliferation of the use of text classifications, researchers have found that there are certain unintended biases in text classification datasets. For example, texts containing some demographic identity-terms (e.g., "gay", "black") are more likely to be abusive in existing abusive language detection datasets. As a result, models trained with these datasets may consider sentences like "She makes me happy to be gay" as abusive simply because of the word "gay." In this paper, we formalize the unintended biases in text classification datasets as a kind of selection bias from the non-discrimination distribution to the discrimination distribution. Based on this formalization, we further propose a model-agnostic debiasing training framework by recovering the non-discrimination distribution using instance weighting, which does not require any extra resources or annotations apart from a pre-defined set of demographic identity-terms. Experiments demonstrate that our method can effectively alleviate the impacts of the unintended biases without significantly hurting models' generalization ability.


Selection Bias Explorations and Debias Methods for Natural Language Sentence Matching Datasets

arXiv.org Artificial Intelligence

Natural Language Sentence Matching (NLSM) has gained substantial attention from both academics and the industry, and rich public datasets contribute a lot to this process. However, biased datasets can also hurt the generalization performance of trained models and give untrustworthy evaluation results. For many NLSM datasets, the providers select some pairs of sentences into the datasets, and this sampling procedure can easily bring unintended pattern, i.e., selection bias. One example is the QuoraQP dataset, where some content-independent naive features are unreasonably predictive. Such features are the reflection of the selection bias and termed as the leakage features. In this paper, we investigate the problem of selection bias on six NLSM datasets and find that four out of them are significantly biased. We further propose a training and evaluation framework to alleviate the bias. Experimental results on QuoraQP suggest that the proposed framework can improve the generalization ability of trained models, and give more trustworthy evaluation results for real-world adoptions.