Goto

Collaborating Authors

 Zhu, Chen


Think Smarter not Harder: Adaptive Reasoning with Inference Aware Optimization

arXiv.org Artificial Intelligence

Solving mathematics problems has been an intriguing capability of large language models, and many efforts have been made to improve reasoning by extending reasoning length, such as through self-correction and extensive long chain-of-thoughts. While promising in problem-solving, advanced long reasoning chain models exhibit an undesired single-modal behavior, where trivial questions require unnecessarily tedious long chains of thought. In this work, we propose a way to allow models to be aware of inference budgets by formulating it as utility maximization with respect to an inference budget constraint, hence naming our algorithm Inference Budget-Constrained Policy Optimization (IBPO). In a nutshell, models fine-tuned through IBPO learn to ``understand'' the difficulty of queries and allocate inference budgets to harder ones. With different inference budgets, our best models are able to have a $4.14$\% and $5.74$\% absolute improvement ($8.08$\% and $11.2$\% relative improvement) on MATH500 using $2.16$x and $4.32$x inference budgets respectively, relative to LLaMA3.1 8B Instruct. These improvements are approximately $2$x those of self-consistency under the same budgets.


Step-KTO: Optimizing Mathematical Reasoning through Stepwise Binary Feedback

arXiv.org Artificial Intelligence

Large language models (LLMs) have recently shown remarkable capabilities in reasoning-intensive tasks such as coding (Chen et al., 2021; Li et al., 2022; Roziรจre et al., 2023) and solving complex mathematical problems (Shao et al., 2024; Azerbayev et al., 2024). Prompting strategies like chain-of-thought prompting (Nye et al., 2021; Wei et al., 2022; Kojima et al., 2022; Adolphs et al., 2022) and self-consistency sampling (Wang et al., 2023) enhance these models' final-answer accuracy by encouraging them to articulate intermediate reasoning steps. However, a significant issue remains: even when these methods boost final-answer correctness, the internal reasoning steps are often unreliable or logically inconsistent (Uesato et al., 2022; Lightman et al., 2024). This discrepancy between correct final answers and flawed intermediate reasoning limits our ability to trust LLMs in scenarios where transparency and correctness of each reasoning stage are crucial (Lanham et al., 2023). For example, in mathematical problem-solving, a model might produce the right answer for the wrong reasons (Lyu et al., 2023; Zheng et al., 2024), confounding our understanding of its true capabilities (Turpin et al., 2023).


Beyond Reward Hacking: Causal Rewards for Large Language Model Alignment

arXiv.org Artificial Intelligence

Recent advancements in large language models (LLMs) have demonstrated remarkable capabilities in generating coherent, contextually appropriate responses across a wide range of tasks (Brown et al., 2020). A key approach to further refine these models is Reinforcement Learning from Human Feedback (RLHF), which leverages human evaluations to guide the training process and align model outputs more closely with human preferences (Stiennon et al., 2020; Ouyang et al., 2022; Bai et al., 2022; Wang et al., 2024). RLHF typically involves training a reward model to capture human preferences, which is then used to fine-tune LLMs via reinforcement learning (RL) (Schulman et al., 2017; Chen et al., 2024b,f). Despite the success of RLHF, reward modeling is inherently prone to spurious correlations, which are associations in the training data that do not reflect true causal relationships (Veitch et al., 2021), and can lead to unintended biases and induce reward hacking (McMilin, 2022). Reward hacking occurs when RL agents exploit flaws or ambiguities in the reward function to maximize rewards without genuinely improving alignment with desired behaviors or completing designed tasks (Amodei et al., 2016; Weng, 2024). Consequently, this leads to misaligned models that exhibit biases such as favoring longer outputs (length bias) (Zheng et al., 2023), agreeing with user's incorrect assertions (sycophancy bias) (Perez et al., 2022), developing unintended shortcuts when making predictions (concept bias) (Zhou et al., 2023), and implicitly developing discrimination over certain demographic groups (discrimination bias) (Tamkin et al., 2023; Chen et al., 2024c). These biases, rooted in spurious correlations and reward hacking rather than true causal relationships, undermine the reliability and trustworthiness of LLMs, posing significant challenges for their safe and responsible deployment in real-world applications (Anwar et al., 2024; Qi et al., 2024). To understand and mitigate these issues, it is essential to consider the sources of error in reward modeling.


Multi-IF: Benchmarking LLMs on Multi-Turn and Multilingual Instructions Following

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have demonstrated impressive capabilities in various tasks, including instruction following, which is crucial for aligning model outputs with user expectations. However, evaluating LLMs' ability to follow instructions remains challenging due to the complexity and subjectivity of human language. Current benchmarks primarily focus on single-turn, monolingual instructions, which do not adequately reflect the complexities of real-world applications that require handling multi-turn and multilingual interactions. To address this gap, we introduce Multi-IF, a new benchmark designed to assess LLMs' proficiency in following multi-turn and multilingual instructions. Multi-IF, which utilizes a hybrid framework combining LLM and human annotators, expands upon the IFEval by incorporating multi-turn sequences and translating the English prompts into another 7 languages, resulting in a dataset of 4,501 multilingual conversations, where each has three turns. Our evaluation of 14 state-of-the-art LLMs on Multi-IF reveals that it presents a significantly more challenging task than existing benchmarks. All the models tested showed a higher rate of failure in executing instructions correctly with each additional turn. For example, o1-preview drops from 0.877 at the first turn to 0.707 at the third turn in terms of average accuracy over all languages. Moreover, languages with non-Latin scripts (Hindi, Russian, and Chinese) generally exhibit higher error rates, suggesting potential limitations in the models' multilingual capabilities. We release Multi-IF prompts and the evaluation code base to encourage further research in this critical area.


Preference Optimization with Multi-Sample Comparisons

arXiv.org Artificial Intelligence

Recent advancements in generative models, particularly large language models (LLMs) and diffusion models, have been driven by extensive pretraining on large datasets followed by post-training. However, current post-training methods such as reinforcement learning from human feedback (RLHF) and direct alignment from preference methods (DAP) primarily utilize single-sample comparisons. These approaches often fail to capture critical characteristics such as generative diversity and bias, which are more accurately assessed through multiple samples. To address these limitations, we introduce a novel approach that extends post-training to include multi-sample comparisons. To achieve this, we propose Multi-sample Direct Preference Optimization (mDPO) and Multi-sample Identity Preference Optimization (mIPO). These methods improve traditional DAP methods by focusing on group-wise characteristics. Empirically, we demonstrate that multi-sample comparison is more effective in optimizing collective characteristics~(e.g., diversity and bias) for generative models than single-sample comparison. Additionally, our findings suggest that multi-sample comparisons provide a more robust optimization framework, particularly for dataset with label noise.


DISCO: A Hierarchical Disentangled Cognitive Diagnosis Framework for Interpretable Job Recommendation

arXiv.org Artificial Intelligence

The rapid development of online recruitment platforms has created unprecedented opportunities for job seekers while concurrently posing the significant challenge of quickly and accurately pinpointing positions that align with their skills and preferences. Job recommendation systems have significantly alleviated the extensive search burden for job seekers by optimizing user engagement metrics, such as clicks and applications, thus achieving notable success. In recent years, a substantial amount of research has been devoted to developing effective job recommendation models, primarily focusing on text-matching based and behavior modeling based methods. While these approaches have realized impressive outcomes, it is imperative to note that research on the explainability of recruitment recommendations remains profoundly unexplored. To this end, in this paper, we propose DISCO, a hierarchical Disentanglement based Cognitive diagnosis framework, aimed at flexibly accommodating the underlying representation learning model for effective and interpretable job recommendations. Specifically, we first design a hierarchical representation disentangling module to explicitly mine the hierarchical skill-related factors implied in hidden representations of job seekers and jobs. Subsequently, we propose level-aware association modeling to enhance information communication and robust representation learning both inter- and intra-level, which consists of the interlevel knowledge influence module and the level-wise contrastive learning. Finally, we devise an interaction diagnosis module incorporating a neural diagnosis function for effectively modeling the multi-level recruitment interaction process between job seekers and jobs, which introduces the cognitive measurement theory.


The Perfect Blend: Redefining RLHF with Mixture of Judges

arXiv.org Artificial Intelligence

Reinforcement learning from human feedback (RLHF) has become the leading approach for fine-tuning large language models (LLM). However, RLHF has limitations in multi-task learning (MTL) due to challenges of reward hacking and extreme multi-objective optimization (i.e., trade-off of multiple and/or sometimes conflicting objectives). Applying RLHF for MTL currently requires careful tuning of the weights for reward model and data combinations. This is often done via human intuition and does not generalize. In this work, we introduce a novel post-training paradigm which we called Constrained Generative Policy Optimization (CGPO). The core of CGPO is Mixture of Judges (MoJ) with cost-efficient constrained policy optimization with stratification, which can identify the perfect blend in RLHF in a principled manner. It shows strong empirical results with theoretical guarantees, does not require extensive hyper-parameter tuning, and is plug-and-play in common post-training pipelines. Together, this can detect and mitigate reward hacking behaviors while reaching a pareto-optimal point across an extremely large number of objectives. Our empirical evaluations demonstrate that CGPO significantly outperforms standard RLHF algorithms like PPO and DPO across various tasks including general chat, STEM questions, instruction following, and coding. Specifically, CGPO shows improvements of 7.4% in AlpacaEval-2 (general chat), 12.5% in Arena-Hard (STEM & reasoning), and consistent gains in other domains like math and coding. Notably, PPO, while commonly used, is prone to severe reward hacking in popular coding benchmarks, which CGPO successfully addresses. This breakthrough in RLHF not only tackles reward hacking and extreme multi-objective optimization challenges but also advances the state-of-the-art in aligning general-purpose LLMs for diverse applications.


Mixture of In-Context Experts Enhance LLMs' Long Context Awareness

arXiv.org Artificial Intelligence

Many studies have revealed that large language models (LLMs) exhibit uneven awareness of different contextual positions.Their limited context awareness can lead to overlooking critical information and subsequent task failures. While several approaches have been proposed to enhance LLMs' context awareness, achieving both effectiveness and efficiency remains challenging.In this paper, for LLMs utilizing RoPE as position embeddings, we introduce a novel method called ``Mixture of In-Context Experts'' (MoICE) to address this challenge. MoICE comprises two key components: a router integrated into each attention head within LLMs and a lightweight router-only training optimization strategy: (1) MoICE views each RoPE angle as an `in-context' expert, demonstrated to be capable of directing the attention of a head to specific contextual positions. Consequently, each attention head flexibly processes tokens using multiple RoPE angles dynamically selected by the router to attend to the needed positions. This approach mitigates the risk of overlooking essential contextual information. (2) The router-only training strategy entails freezing LLM parameters and exclusively updating routers for only a few steps. When applied to open-source LLMs including Llama and Mistral, MoICE surpasses prior methods across multiple tasks on long context understanding and generation, all while maintaining commendable inference efficiency.


Adapting Job Recommendations to User Preference Drift with Behavioral-Semantic Fusion Learning

arXiv.org Artificial Intelligence

Job recommender systems are crucial for aligning job opportunities with job-seekers in online job-seeking. However, users tend to adjust their job preferences to secure employment opportunities continually, which limits the performance of job recommendations. The inherent frequency of preference drift poses a challenge to promptly and precisely capture user preferences. To address this issue, we propose a novel session-based framework, BISTRO, to timely model user preference through fusion learning of semantic and behavioral information. Specifically, BISTRO is composed of three stages: 1) coarse-grained semantic clustering, 2) fine-grained job preference extraction, and 3) personalized top-$k$ job recommendation. Initially, BISTRO segments the user interaction sequence into sessions and leverages session-based semantic clustering to achieve broad identification of person-job matching. Subsequently, we design a hypergraph wavelet learning method to capture the nuanced job preference drift. To mitigate the effect of noise in interactions caused by frequent preference drift, we innovatively propose an adaptive wavelet filtering technique to remove noisy interaction. Finally, a recurrent neural network is utilized to analyze session-based interaction for inferring personalized preferences. Extensive experiments on three real-world offline recruitment datasets demonstrate the significant performances of our framework. Significantly, BISTRO also excels in online experiments, affirming its effectiveness in live recruitment settings. This dual success underscores the robustness and adaptability of BISTRO. The source code is available at https://github.com/Applied-Machine-Learning-Lab/BISTRO.


Job-SDF: A Multi-Granularity Dataset for Job Skill Demand Forecasting and Benchmarking

arXiv.org Artificial Intelligence

In a rapidly evolving job market, skill demand forecasting is crucial as it enables policymakers and businesses to anticipate and adapt to changes, ensuring that workforce skills align with market needs, thereby enhancing productivity and competitiveness. Additionally, by identifying emerging skill requirements, it directs individuals towards relevant training and education opportunities, promoting continuous self-learning and development. However, the absence of comprehensive datasets presents a significant challenge, impeding research and the advancement of this field. To bridge this gap, we present Job-SDF, a dataset designed to train and benchmark job-skill demand forecasting models. Based on 10.35 million public job advertisements collected from major online recruitment platforms in China between 2021 and 2023, this dataset encompasses monthly recruitment demand for 2,324 types of skills across 521 companies. Our dataset uniquely enables evaluating skill demand forecasting models at various granularities, including occupation, company, and regional levels. We benchmark a range of models on this dataset, evaluating their performance in standard scenarios, in predictions focused on lower value ranges, and in the presence of structural breaks, providing new insights for further research.