Zhu, Bilei
ByteComposer: a Human-like Melody Composition Method based on Language Model Agent
Liang, Xia, Du, Xingjian, Lin, Jiaju, Zou, Pei, Wan, Yuan, Zhu, Bilei
Large Language Models (LLM) have shown encouraging progress in multimodal understanding and generation tasks. However, how to design a human-aligned and interpretable melody composition system is still under-explored. To solve this problem, we propose ByteComposer, an agent framework emulating a human's creative pipeline in four separate steps : "Conception Analysis - Draft Composition - Self-Evaluation and Modification - Aesthetic Selection". This framework seamlessly blends the interactive and knowledge-understanding features of LLMs with existing symbolic music generation models, thereby achieving a melody composition agent comparable to human creators. We conduct extensive experiments on GPT4 and several open-source large language models, which substantiate our framework's effectiveness. Furthermore, professional music composers were engaged in multi-dimensional evaluations, the final results demonstrated that across various facets of music composition, ByteComposer agent attains the level of a novice melody composer.
Joint Music and Language Attention Models for Zero-shot Music Tagging
Du, Xingjian, Yu, Zhesong, Lin, Jiaju, Zhu, Bilei, Kong, Qiuqiang
Music tagging is a task to predict the tags of music recordings. However, previous music tagging research primarily focuses on close-set music tagging tasks which can not be generalized to new tags. In this work, we propose a zero-shot music tagging system modeled by a joint music and language attention (JMLA) model to address the open-set music tagging problem. The JMLA model consists of an audio encoder modeled by a pretrained masked autoencoder and a decoder modeled by a Falcon7B. We introduce preceiver resampler to convert arbitrary length audio into fixed length embeddings. We introduce dense attention connections between encoder and decoder layers to improve the information flow between the encoder and decoder layers. We collect a large-scale music and description dataset from the internet. We propose to use ChatGPT to convert the raw descriptions into formalized and diverse descriptions to train the JMLA models. Our proposed JMLA system achieves a zero-shot audio tagging accuracy of $ 64.82\% $ on the GTZAN dataset, outperforming previous zero-shot systems and achieves comparable results to previous systems on the FMA and the MagnaTagATune datasets.
HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection
Chen, Ke, Du, Xingjian, Zhu, Bilei, Ma, Zejun, Berg-Kirkpatrick, Taylor, Dubnov, Shlomo
Audio classification is an important task of mapping audio samples into their corresponding labels. Recently, the transformer model with self-attention mechanisms has been adopted in this field. However, existing audio transformers require large GPU memories and long training time, meanwhile relying on pretrained vision models to achieve high performance, which limits the model's scalability in audio tasks. To combat these problems, we introduce HTS-AT: an audio transformer with a hierarchical structure to reduce the model size and training time. It is further combined with a token-semantic module to map final outputs into class featuremaps, thus enabling the model for the audio event detection (i.e. localization in time). We evaluate HTS-AT on three datasets of audio classification where it achieves new state-of-the-art (SOTA) results on AudioSet and ESC-50, and equals the SOTA on Speech Command V2. It also achieves better performance in event localization than the previous CNN-based models. Moreover, HTS-AT requires only 35% model parameters and 15% training time of the previous audio transformer. These results demonstrate the high performance and high efficiency of HTS-AT.
Zero-shot Audio Source Separation through Query-based Learning from Weakly-labeled Data
Chen, Ke, Du, Xingjian, Zhu, Bilei, Ma, Zejun, Berg-kirkpatrick, Taylor, Dubnov, Shlomo
Deep learning techniques for separating audio into different sound sources face several challenges. Standard architectures require training separate models for different types of audio sources. Although some universal separators employ a single model to target multiple sources, they have difficulty generalizing to unseen sources. In this paper, we propose a three-component pipeline to train a universal audio source separator from a large, but weakly-labeled dataset: AudioSet. First, we propose a transformer-based sound event detection system for processing weakly-labeled training data. Second, we devise a query-based audio separation model that leverages this data for model training. Third, we design a latent embedding processor to encode queries that specify audio targets for separation, allowing for zero-shot generalization. Our approach uses a single model for source separation of multiple sound types, and relies solely on weakly-labeled data for training. In addition, the proposed audio separator can be used in a zero-shot setting, learning to separate types of audio sources that were never seen in training. To evaluate the separation performance, we test our model on MUSDB18, while training on the disjoint AudioSet. We further verify the zero-shot performance by conducting another experiment on audio source types that are held-out from training. The model achieves comparable Source-to-Distortion Ratio (SDR) performance to current supervised models in both cases.