Zhoutong Zhang
Shape and Material from Sound
Zhoutong Zhang, Qiujia Li, Zhengjia Huang, Jiajun Wu, Josh Tenenbaum, Bill Freeman
Learning to Reconstruct Shapes from Unseen Classes
Xiuming Zhang, Zhoutong Zhang, Chengkai Zhang, Josh Tenenbaum, Bill Freeman, Jiajun Wu
From a single image, humans are able to perceive the full 3D shape of an object by exploiting learned shape priors from everyday life. Contemporary single-image 3D reconstruction algorithms aim to solve this task in a similar fashion, but often end up with priors that are highly biased by training classes. Here we present an algorithm, Generalizable Reconstruction (GenRe), designed to capture more generic, class-agnostic shape priors. We achieve this with an inference network and training procedure that combine 2.5D representations of visible surfaces (depth and silhouette), spherical shape representations of both visible and non-visible surfaces, and 3D voxel-based representations, in a principled manner that exploits the causal structure of how 3D shapes give rise to 2D images. Experiments demonstrate that GenRe performs well on single-view shape reconstruction, and generalizes to diverse novel objects from categories not seen during training.
Shape and Material from Sound
Zhoutong Zhang, Qiujia Li, Zhengjia Huang, Jiajun Wu, Josh Tenenbaum, Bill Freeman
Hearing an object falling onto the ground, humans can recover rich information including its rough shape, material, and falling height. In this paper, we build machines to approximate such competency. We first mimic human knowledge of the physical world by building an efficient, physics-based simulation engine. Then, we present an analysis-by-synthesis approach to infer properties of the falling object. We further accelerate the process by learning a mapping from a sound wave to object properties, and using the predicted values to initialize the inference. This mapping can be viewed as an approximation of human commonsense learned from past experience. Our model performs well on both synthetic audio clips and real recordings without requiring any annotated data. We conduct behavior studies to compare human responses with ours on estimating object shape, material, and falling height from sound. Our model achieves near-human performance.