Goto

Collaborating Authors

 Zhou, Zhong


Massively Multilingual Text Translation For Low-Resource Languages

arXiv.org Artificial Intelligence

Translation into severely low-resource languages has both the cultural goal of saving and reviving those languages and the humanitarian goal of assisting the everyday needs of local communities that are accelerated by the recent COVID-19 pandemic. In many humanitarian efforts, translation into severely low-resource languages often does not require a universal translation engine, but a dedicated text-specific translation engine. For example, healthcare records, hygienic procedures, government communication, emergency procedures and religious texts are all limited texts. While generic translation engines for all languages do not exist, translation of multilingually known limited texts into new, low-resource languages may be possible and reduce human translation effort. We attempt to leverage translation resources from rich-resource languages to efficiently produce best possible translation quality for well known texts, which are available in multiple languages, in a new, low-resource language. To reach this goal, we argue that in translating a closed text into low-resource languages, generalization to out-of-domain texts is not necessary, but generalization to new languages is. Performance gain comes from massive source parallelism by careful choice of close-by language families, style-consistent corpus-level paraphrases within the same language and strategic adaptation of existing large pretrained multilingual models to the domain first and then to the language. Such performance gain makes it possible for machine translation systems to collaborate with human translators to expedite the translation process into new, low-resource languages.


QR-CLIP: Introducing Explicit Open-World Knowledge for Location and Time Reasoning

arXiv.org Artificial Intelligence

Daily images may convey abstract meanings that require us to memorize and infer profound information from them. To encourage such human-like reasoning, in this work, we teach machines to predict where and when it was taken rather than performing basic tasks like traditional segmentation or classification. Inspired by Horn's QR theory, we designed a novel QR-CLIP model consisting of two components: 1) the Quantity module first retrospects more open-world knowledge as the candidate language inputs; 2) the Relevance module carefully estimates vision and language cues and infers the location and time. Experiments show our QR-CLIP's effectiveness, and it outperforms the previous SOTA on each task by an average of about 10% and 130% relative lift in terms of location and time reasoning. This study lays a technical foundation for location and time reasoning and suggests that effectively introducing open-world knowledge is one of the panaceas for the tasks.


Train Global, Tailor Local: Minimalist Multilingual Translation into Endangered Languages

arXiv.org Artificial Intelligence

In many humanitarian scenarios, translation into severely low resource languages often does not require a universal translation engine, but a dedicated text-specific translation engine. For example, healthcare records, hygienic procedures, government communication, emergency procedures and religious texts are all limited texts. While generic translation engines for all languages do not exist, translation of multilingually known limited texts into new, endangered languages may be possible and reduce human translation effort. We attempt to leverage translation resources from many rich resource languages to efficiently produce best possible translation quality for a well known text, which is available in multiple languages, in a new, severely low resource language. We examine two approaches: 1. best selection of seed sentences to jump start translations in a new language in view of best generalization to the remainder of a larger targeted text(s), and 2. we adapt large general multilingual translation engines from many other languages to focus on a specific text in a new, unknown language. We find that adapting large pretrained multilingual models to the domain/text first and then to the severely low resource language works best. If we also select a best set of seed sentences, we can improve average chrF performance on new test languages from a baseline of 21.9 to 50.7, while reducing the number of seed sentences to only around 1,000 in the new, unknown language.


Family of Origin and Family of Choice: Massively Parallel Lexiconized Iterative Pretraining for Severely Low Resource Machine Translation

arXiv.org Artificial Intelligence

We translate a closed text that is known in advance into a severely low resource language by leveraging massive source parallelism. In other words, given a text in 124 source languages, we translate it into a severely low resource language using only ~1,000 lines of low resource data without any external help. Firstly, we propose a systematic method to rank and choose source languages that are close to the low resource language. We call the linguistic definition of language family Family of Origin (FAMO), and we call the empirical definition of higher-ranked languages using our metrics Family of Choice (FAMC). Secondly, we build an Iteratively Pretrained Multilingual Order-preserving Lexiconized Transformer (IPML) to train on ~1,000 lines (~3.5%) of low resource data. To translate named entities correctly, we build a massive lexicon table for 2,939 Bible named entities in 124 source languages, and include many that occur once and covers more than 66 severely low resource languages. Moreover, we also build a novel method of combining translations from different source languages into one. Using English as a hypothetical low resource language, we get a +23.9 BLEU increase over a multilingual baseline, and a +10.3 BLEU increase over our asymmetric baseline in the Bible dataset. We get a 42.8 BLEU score for Portuguese-English translation on the medical EMEA dataset. We also have good results for a real severely low resource Mayan language, Eastern Pokomchi.