Zhou, Zhenghao
Meaning Beyond Truth Conditions: Evaluating Discourse Level Understanding via Anaphora Accessibility
Zhu, Xiaomeng, Zhou, Zhenghao, Charlow, Simon, Frank, Robert
We present a hierarchy of natural language understanding abilities and argue for the importance of moving beyond assessments of understanding at the lexical and sentence levels to the discourse level. We propose the task of anaphora accessibility as a diagnostic for assessing discourse understanding, and to this end, present an evaluation dataset inspired by theoretical research in dynamic semantics. We evaluate human and LLM performance on our dataset and find that LLMs and humans align on some tasks and diverge on others. Such divergence can be explained by LLMs' reliance on specific lexical items during language comprehension, in contrast to human sensitivity to structural abstractions.
Is In-Context Learning a Type of Gradient-Based Learning? Evidence from the Inverse Frequency Effect in Structural Priming
Zhou, Zhenghao, Frank, Robert, McCoy, R. Thomas
Large language models (LLMs) have shown the emergent capability of in-context learning (ICL). One line of research has explained ICL as functionally performing gradient descent. In this paper, we introduce a new way of diagnosing whether ICL is functionally equivalent to gradient-based learning. Our approach is based on the inverse frequency effect (IFE) -- a phenomenon in which an error-driven learner is expected to show larger updates when trained on infrequent examples than frequent ones. The IFE has previously been studied in psycholinguistics because humans show this effect in the context of structural priming (the tendency for people to produce sentence structures they have encountered recently); the IFE has been used as evidence that human structural priming must involve error-driven learning mechanisms. In our experiments, we simulated structural priming within ICL and found that LLMs display the IFE, with the effect being stronger in larger models. We conclude that ICL is indeed a type of gradient-based learning, supporting the hypothesis that a gradient component is implicitly computed in the forward pass during ICL. Our results suggest that both humans and LLMs make use of gradient-based, error-driven processing mechanisms.