Zhou, Ze
CL-MoE: Enhancing Multimodal Large Language Model with Dual Momentum Mixture-of-Experts for Continual Visual Question Answering
Huai, Tianyu, Zhou, Jie, Wu, Xingjiao, Chen, Qin, Bai, Qingchun, Zhou, Ze, He, Liang
Multimodal large language models (MLLMs) have garnered widespread attention from researchers due to their remarkable understanding and generation capabilities in visual language tasks (e.g., visual question answering). However, the rapid pace of knowledge updates in the real world makes offline training of MLLMs costly, and when faced with non-stationary data streams, MLLMs suffer from catastrophic forgetting during learning. In this paper, we propose an MLLMs-based dual momentum Mixture-of-Experts (CL-MoE) framework for continual visual question answering (VQA). We integrate MLLMs with continual learning to utilize the rich commonsense knowledge in LLMs. We introduce a Dual-Router MoE (RMoE) strategy to select the global and local experts using task-level and instance-level routers, to robustly assign weights to the experts most appropriate for the task. Then, we design a dynamic Momentum MoE (MMoE) to update the parameters of experts dynamically based on the relationships between the experts and tasks/instances, so that the model can absorb new knowledge while maintaining existing knowledge. The extensive experimental results indicate that our method achieves state-of-the-art performance on 10 VQA tasks, proving the effectiveness of our approach.
EduChat: A Large-Scale Language Model-based Chatbot System for Intelligent Education
Dan, Yuhao, Lei, Zhikai, Gu, Yiyang, Li, Yong, Yin, Jianghao, Lin, Jiaju, Ye, Linhao, Tie, Zhiyan, Zhou, Yougen, Wang, Yilei, Zhou, Aimin, Zhou, Ze, Chen, Qin, Zhou, Jie, He, Liang, Qiu, Xipeng
EduChat (https://www.educhat.top/) is a large-scale language model (LLM)-based chatbot system in the education domain. Its goal is to support personalized, fair, and compassionate intelligent education, serving teachers, students, and parents. Guided by theories from psychology and education, it further strengthens educational functions such as open question answering, essay assessment, Socratic teaching, and emotional support based on the existing basic LLMs. Particularly, we learn domain-specific knowledge by pre-training on the educational corpus and stimulate various skills with tool use by fine-tuning on designed system prompts and instructions. Currently, EduChat is available online as an open-source project, with its code, data, and model parameters available on platforms (e.g., GitHub https://github.com/icalk-nlp/EduChat, Hugging Face https://huggingface.co/ecnu-icalk ). We also prepare a demonstration of its capabilities online (https://vimeo.com/851004454). This initiative aims to promote research and applications of LLMs for intelligent education.