Goto

Collaborating Authors

 Zhou, Yuyan


Baichuan-M1: Pushing the Medical Capability of Large Language Models

arXiv.org Artificial Intelligence

The current generation of large language models (LLMs) is typically designed for broad, general-purpose applications, while domain-specific LLMs, especially in vertical fields like medicine, remain relatively scarce. In particular, the development of highly efficient and practical LLMs for the medical domain is challenging due to the complexity of medical knowledge and the limited availability of high-quality data. To bridge this gap, we introduce Baichuan-M1, a series of large language models specifically optimized for medical applications. Unlike traditional approaches that simply continue pretraining on existing models or apply post-training to a general base model, Baichuan-M1 is trained from scratch with a dedicated focus on enhancing medical capabilities. Our model is trained on 20 trillion tokens and incorporates a range of effective training methods that strike a balance between general capabilities and medical expertise. As a result, Baichuan-M1 not only performs strongly across general domains such as mathematics and coding but also excels in specialized medical fields. We have open-sourced Baichuan-M1-14B, a mini version of our model, which can be accessed through the following links.


MetaGPT: Merging Large Language Models Using Model Exclusive Task Arithmetic

arXiv.org Artificial Intelligence

The advent of large language models (LLMs) like GPT-4 has catalyzed the exploration of multi-task learning (MTL), in which a single model demonstrates proficiency across diverse tasks. Task arithmetic has emerged as a cost-effective approach for MTL. It enables performance enhancement across multiple tasks by adding their corresponding task vectors to a pre-trained model. However, the current lack of a method that can simultaneously achieve optimal performance, computational efficiency, and data privacy limits their application to LLMs. In this paper, we propose \textbf{M}odel \textbf{E}xclusive \textbf{T}ask \textbf{A}rithmetic for merging \textbf{GPT}-scale models, which formalizes the objective of model merging into a multi-task learning framework, aiming to minimize the average loss difference between the merged model and each individual task model. Since data privacy limits the use of multi-task training data, we leverage LLMs' local linearity and task vectors' orthogonality to separate the data term and scaling coefficients term and derive a model-exclusive task arithmetic method. Our proposed MetaGPT is data-agnostic and bypasses the heavy search process, making it cost-effective and easy to implement for LLMs.Extensive experiments demonstrate that MetaGPT leads to improvements in task arithmetic and achieves state-of-the-art performance on multiple tasks.


Improving Generalization of Deep Neural Networks by Optimum Shifting

arXiv.org Artificial Intelligence

Recent studies showed that the generalization of neural networks is correlated with the sharpness of the loss landscape, and flat minima suggests a better generalization ability than sharp minima. In this paper, we propose a novel method called \emph{optimum shifting}, which changes the parameters of a neural network from a sharp minimum to a flatter one while maintaining the same training loss value. Our method is based on the observation that when the input and output of a neural network are fixed, the matrix multiplications within the network can be treated as systems of under-determined linear equations, enabling adjustment of parameters in the solution space, which can be simply accomplished by solving a constrained optimization problem. Furthermore, we introduce a practical stochastic optimum shifting technique utilizing the Neural Collapse theory to reduce computational costs and provide more degrees of freedom for optimum shifting. Extensive experiments (including classification and detection) with various deep neural network architectures on benchmark datasets demonstrate the effectiveness of our method.