Goto

Collaborating Authors

 Zhou, Yirong


Simultaneous Deep Learning of Myocardium Segmentation and T2 Quantification for Acute Myocardial Infarction MRI

arXiv.org Artificial Intelligence

In cardiac Magnetic Resonance Imaging (MRI) analysis, simultaneous myocardial segmentation and T2 quantification are crucial for assessing myocardial pathologies. Existing methods often address these tasks separately, limiting their synergistic potential. To address this, we propose SQNet, a dual-task network integrating Transformer and Convolutional Neural Network (CNN) components. SQNet features a T2-refine fusion decoder for quantitative analysis, leveraging global features from the Transformer, and a segmentation decoder with multiple local region supervision for enhanced accuracy. A tight coupling module aligns and fuses CNN and Transformer branch features, enabling SQNet to focus on myocardium regions. Evaluation on healthy controls (HC) and acute myocardial infarction patients (AMI) demonstrates superior segmentation dice scores (89.3/89.2) compared to state-of-the-art methods (87.7/87.9). T2 quantification yields strong linear correlations (Pearson coefficients: 0.84/0.93) with label values for HC/AMI, indicating accurate mapping. Radiologist evaluations confirm SQNet's superior image quality scores (4.60/4.58 for segmentation, 4.32/4.42 for T2 quantification) over state-of-the-art methods (4.50/4.44 for segmentation, 3.59/4.37 for T2 quantification). SQNet thus offers accurate simultaneous segmentation and quantification, enhancing cardiac disease diagnosis, such as AMI.


Deep Separable Spatiotemporal Learning for Fast Dynamic Cardiac MRI

arXiv.org Artificial Intelligence

Dynamic magnetic resonance imaging (MRI) plays an indispensable role in cardiac diagnosis. To enable fast imaging, the k-space data can be undersampled but the image reconstruction poses a great challenge of high-dimensional processing. This challenge leads to necessitate extensive training data in many deep learning reconstruction methods. This work proposes a novel and efficient approach, leveraging a dimension-reduced separable learning scheme that excels even with highly limited training data. We further integrate it with spatiotemporal priors to develop a Deep Separable Spatiotemporal Learning network (DeepSSL), which unrolls an iteration process of a reconstruction model with both temporal low-rankness and spatial sparsity. Intermediate outputs are visualized to provide insights into the network's behavior and enhance its interpretability. Extensive results on cardiac cine datasets show that the proposed DeepSSL is superior to the state-of-the-art methods visually and quantitatively, while reducing the demand for training cases by up to 75%. And its preliminary adaptability to cardiac patients has been verified through experienced radiologists' and cardiologists' blind reader study. Additionally, DeepSSL also benefits for achieving the downstream task of cardiac segmentation with higher accuracy and shows robustness in prospective real-time cardiac MRI.


Cloud-Magnetic Resonance Imaging System: In the Era of 6G and Artificial Intelligence

arXiv.org Artificial Intelligence

Magnetic Resonance Imaging (MRI) plays an important role in medical diagnosis, generating petabytes of image data annually in large hospitals. This voluminous data stream requires a significant amount of network bandwidth and extensive storage infrastructure. Additionally, local data processing demands substantial manpower and hardware investments. Data isolation across different healthcare institutions hinders cross-institutional collaboration in clinics and research. In this work, we anticipate an innovative MRI system and its four generations that integrate emerging distributed cloud computing, 6G bandwidth, edge computing, federated learning, and blockchain technology. This system is called Cloud-MRI, aiming at solving the problems of MRI data storage security, transmission speed, AI algorithm maintenance, hardware upgrading, and collaborative work. The workflow commences with the transformation of k-space raw data into the standardized Imaging Society for Magnetic Resonance in Medicine Raw Data (ISMRMRD) format. Then, the data are uploaded to the cloud or edge nodes for fast image reconstruction, neural network training, and automatic analysis. Then, the outcomes are seamlessly transmitted to clinics or research institutes for diagnosis and other services. The Cloud-MRI system will save the raw imaging data, reduce the risk of data loss, facilitate inter-institutional medical collaboration, and finally improve diagnostic accuracy and work efficiency.


Magnetic Resonance Spectroscopy Quantification Aided by Deep Estimations of Imperfection Factors and Macromolecular Signal

arXiv.org Artificial Intelligence

Objective: Magnetic Resonance Spectroscopy (MRS) is an important technique for biomedical detection. However, it is challenging to accurately quantify metabolites with proton MRS due to serious overlaps of metabolite signals, imperfections because of non-ideal acquisition conditions, and interference with strong background signals mainly from macromolecules. The most popular method, LCModel, adopts complicated non-linear least square to quantify metabolites and addresses these problems by designing empirical priors such as basis-sets, imperfection factors. However, when the signal-to-noise ratio of MRS signal is low, the solution may have large deviation. Methods: Linear Least Squares (LLS) is integrated with deep learning to reduce the complexity of solving this overall quantification. First, a neural network is designed to explicitly predict the imperfection factors and the overall signal from macromolecules. Then, metabolite quantification is solved analytically with the introduced LLS. In our Quantification Network (QNet), LLS takes part in the backpropagation of network training, which allows the feedback of the quantification error into metabolite spectrum estimation. This scheme greatly improves the generalization to metabolite concentrations unseen for training compared to the end-to-end deep learning method. Results: Experiments show that compared with LCModel, the proposed QNet, has smaller quantification errors for simulated data, and presents more stable quantification for 20 healthy in vivo data at a wide range of signal-to-noise ratio. QNet also outperforms other end-to-end deep learning methods. Conclusion: This study provides an intelligent, reliable and robust MRS quantification. Significance: QNet is the first LLS quantification aided by deep learning.