Goto

Collaborating Authors

 Zhou, Yining


Do Deepfake Detectors Work in Reality?

arXiv.org Artificial Intelligence

Deepfakes, particularly those involving faceswap-based manipulations, have sparked significant societal concern due to their increasing realism and potential for misuse. Despite rapid advancements in generative models, detection methods have not kept pace, creating a critical gap in defense strategies. This disparity is further amplified by the disconnect between academic research and real-world applications, which often prioritize different objectives and evaluation criteria. In this study, we take a pivotal step toward bridging this gap by presenting a novel observation: the post-processing step of super-resolution, commonly employed in real-world scenarios, substantially undermines the effectiveness of existing deepfake detection methods. To substantiate this claim, we introduce and publish the first real-world faceswap dataset, collected from popular online faceswap platforms. We then qualitatively evaluate the performance of state-of-the-art deepfake detectors on real-world deepfakes, revealing that their accuracy approaches the level of random guessing. Furthermore, we quantitatively demonstrate the significant performance degradation caused by common post-processing techniques. By addressing this overlooked challenge, our study underscores a critical avenue for enhancing the robustness and practical applicability of deepfake detection methods in real-world settings.


Detection of AI Deepfake and Fraud in Online Payments Using GAN-Based Models

arXiv.org Artificial Intelligence

This study explores the use of Generative Adversarial Networks (GANs) to detect AI deepfakes and fraudulent activities in online payment systems. With the growing prevalence of deepfake technology, which can manipulate facial features in images and videos, the potential for fraud in online transactions has escalated. Traditional security systems struggle to identify these sophisticated forms of fraud. This research proposes a novel GAN-based model that enhances online payment security by identifying subtle manipulations in payment images. The model is trained on a dataset consisting of real-world online payment images and deepfake images generated using advanced GAN architectures, such as StyleGAN and DeepFake. The results demonstrate that the proposed model can accurately distinguish between legitimate transactions and deepfakes, achieving a high detection rate above 95%. This approach significantly improves the robustness of payment systems against AI-driven fraud. The paper contributes to the growing field of digital security, offering insights into the application of GANs for fraud detection in financial services. Keywords- Payment Security, Image Recognition, Generative Adversarial Networks, AI Deepfake, Fraudulent Activities


Developing Cryptocurrency Trading Strategy Based on Autoencoder-CNN-GANs Algorithms

arXiv.org Artificial Intelligence

This paper leverages machine learning algorithms to forecast and analyze financial time series. The process begins with a denoising autoencoder to filter out random noise fluctuations from the main contract price data. Then, one-dimensional convolution reduces the dimensionality of the filtered data and extracts key information. The filtered and dimensionality-reduced price data is fed into a GANs network, and its output serve as input of a fully connected network. Through cross-validation, a model is trained to capture features that precede large price fluctuations. The model predicts the likelihood and direction of significant price changes in real-time price sequences, placing trades at moments of high prediction accuracy. Empirical results demonstrate that using autoencoders and convolution to filter and denoise financial data, combined with GANs, achieves a certain level of predictive performance, validating the capabilities of machine learning algorithms to discover underlying patterns in financial sequences. Keywords - CNN;GANs; Cryptocurrency; Prediction.