Zhou, Yang
Aether: Geometric-Aware Unified World Modeling
Aether Team, null, Zhu, Haoyi, Wang, Yifan, Zhou, Jianjun, Chang, Wenzheng, Zhou, Yang, Li, Zizun, Chen, Junyi, Shen, Chunhua, Pang, Jiangmiao, He, Tong
The integration of geometric reconstruction and generative modeling remains a critical challenge in developing AI systems capable of human-like spatial reasoning. This paper proposes Aether, a unified framework that enables geometry-aware reasoning in world models by jointly optimizing three core capabilities: (1) 4D dynamic reconstruction, (2) action-conditioned video prediction, and (3) goal-conditioned visual planning. Through task-interleaved feature learning, Aether achieves synergistic knowledge sharing across reconstruction, prediction, and planning objectives. Building upon video generation models, our framework demonstrates unprecedented synthetic-to-real generalization despite never observing real-world data during training. Furthermore, our approach achieves zero-shot generalization in both action following and reconstruction tasks, thanks to its intrinsic geometric modeling. Remarkably, even without real-world data, its reconstruction performance is comparable with or even better than that of domain-specific models. Additionally, Aether employs camera trajectories as geometry-informed action spaces, enabling effective action-conditioned prediction and visual planning. We hope our work inspires the community to explore new frontiers in physically-reasonable world modeling and its applications.
VEGGIE: Instructional Editing and Reasoning of Video Concepts with Grounded Generation
Yu, Shoubin, Liu, Difan, Ma, Ziqiao, Hong, Yicong, Zhou, Yang, Tan, Hao, Chai, Joyce, Bansal, Mohit
Recent video diffusion models have enhanced video editing, but it remains challenging to handle instructional editing and diverse tasks (e.g., adding, removing, changing) within a unified framework. In this paper, we introduce VEGGIE, a Video Editor with Grounded Generation from Instructions, a simple end-to-end framework that unifies video concept editing, grounding, and reasoning based on diverse user instructions. Specifically, given a video and text query, VEGGIE first utilizes an MLLM to interpret user intentions in instructions and ground them to the video contexts, generating frame-specific grounded task queries for pixel-space responses. A diffusion model then renders these plans and generates edited videos that align with user intent. To support diverse tasks and complex instructions, we employ a curriculum learning strategy: first aligning the MLLM and video diffusion model with large-scale instructional image editing data, followed by end-to-end fine-tuning on high-quality multitask video data. Additionally, we introduce a novel data synthesis pipeline to generate paired instructional video editing data for model training. It transforms static image data into diverse, high-quality video editing samples by leveraging Image-to-Video models to inject dynamics. VEGGIE shows strong performance in instructional video editing with different editing skills, outperforming the best instructional baseline as a versatile model, while other models struggle with multi-tasking. VEGGIE also excels in video object grounding and reasoning segmentation, where other baselines fail. We further reveal how the multiple tasks help each other and highlight promising applications like zero-shot multimodal instructional and in-context video editing.
LED: LLM Enhanced Open-Vocabulary Object Detection without Human Curated Data Generation
Zhou, Yang, Zhao, Shiyu, Chen, Yuxiao, Wang, Zhenting, Metaxas, Dimitris N.
Large foundation models trained on large-scale visual-text data can significantly enhance Open Vocabulary Object Detection (OVD) through data generation. However, this may lead to biased synthetic data and overfitting to specific configurations. It can sidestep biases of manually curated data generation by directly leveraging hidden states of Large Language Models (LLMs), which is surprisingly rarely explored. This paper presents a systematic method to enhance visual grounding by utilizing decoder layers of the LLM of a MLLM. We introduce a zero-initialized cross-attention adapter to enable efficient knowledge transfer from LLMs to object detectors, an new approach called LED (LLM Enhanced Open-Vocabulary Object Detection). We demonstrate that intermediate hidden states from early LLM layers retain strong spatial-semantic correlations that are beneficial to grounding tasks. Experiments show that our adaptation strategy significantly enhances the performance on complex free-form text queries while remaining the same on plain categories. With our adaptation, Qwen2-0.5B with Swin-T as the vision encoder improves GroundingDINO by 2.33% on Omnilabel, at the overhead of 8.7% more GFLOPs. Qwen2-0.5B with a larger vision encoder can further boost the performance by 6.22%. We further validate our design by ablating on varied adapter architectures, sizes of LLMs, and which layers to add adaptation.
A Survey of Direct Preference Optimization
Liu, Shunyu, Fang, Wenkai, Hu, Zetian, Zhang, Junjie, Zhou, Yang, Zhang, Kongcheng, Tu, Rongcheng, Lin, Ting-En, Huang, Fei, Song, Mingli, Li, Yongbin, Tao, Dacheng
Large Language Models (LLMs) have demonstrated unprecedented generative capabilities, yet their alignment with human values remains critical for ensuring helpful and harmless deployments. While Reinforcement Learning from Human Feedback (RLHF) has emerged as a powerful paradigm for aligning LLMs with human preferences, its reliance on complex reward modeling introduces inherent trade-offs in computational efficiency and training stability. In this context, Direct Preference Optimization (DPO) has recently gained prominence as a streamlined alternative that directly optimizes LLMs using human preferences, thereby circumventing the need for explicit reward modeling. Owing to its theoretical elegance and computational efficiency, DPO has rapidly attracted substantial research efforts exploring its various implementations and applications. However, this field currently lacks systematic organization and comparative analysis. In this survey, we conduct a comprehensive overview of DPO and introduce a novel taxonomy, categorizing previous works into four key dimensions: data strategy, learning framework, constraint mechanism, and model property. We further present a rigorous empirical analysis of DPO variants across standardized benchmarks. Additionally, we discuss real-world applications, open challenges, and future directions for DPO. This work delivers both a conceptual framework for understanding DPO and practical guidance for practitioners, aiming to advance robust and generalizable alignment paradigms. All collected resources are available and will be continuously updated at https://github.com/liushunyu/awesome-direct-preference-optimization.
Can Large Language Models Unveil the Mysteries? An Exploration of Their Ability to Unlock Information in Complex Scenarios
Wang, Chao, Zhang, Luning, Wang, Zheng, Zhou, Yang
Combining multiple perceptual inputs and performing combinatorial reasoning in complex scenarios is a sophisticated cognitive function in humans. With advancements in multi-modal large language models, recent benchmarks tend to evaluate visual understanding across multiple images. However, they often overlook the necessity of combinatorial reasoning across multiple perceptual information. To explore the ability of advanced models to integrate multiple perceptual inputs for combinatorial reasoning in complex scenarios, we introduce two benchmarks: Clue-Visual Question Answering (CVQA), with three task types to assess visual comprehension and synthesis, and Clue of Password-Visual Question Answering (CPVQA), with two task types focused on accurate interpretation and application of visual data. For our benchmarks, we present three plug-and-play approaches: utilizing model input for reasoning, enhancing reasoning through minimum margin decoding with randomness generation, and retrieving semantically relevant visual information for effective data integration. The combined results reveal current models' poor performance on combinatorial reasoning benchmarks, even the state-of-the-art (SOTA) closed-source model achieves only 33.04% accuracy on CVQA, and drops to 7.38% on CPVQA. Notably, our approach improves the performance of models on combinatorial reasoning, with a 22.17% boost on CVQA and 9.40% on CPVQA over the SOTA closed-source model, demonstrating its effectiveness in enhancing combinatorial reasoning with multiple perceptual inputs in complex scenarios. The code will be publicly available.
TPC: Cross-Temporal Prediction Connection for Vision-Language Model Hallucination Reduction
Wang, Chao, Fu, Weiwei, Zhou, Yang
Vision-language models (VLMs) have achieved remarkable advancements, capitalizing on the impressive capabilities of large language models (LLMs) across diverse tasks. Despite this, a critical challenge known as hallucination occurs when models overconfidently describe objects or attributes absent from the image, a problem exacerbated by the tendency of VLMs to rely on linguistic priors. This limitation reduces model reliability in high-stakes applications. In this work, we have observed the characteristic of logits' continuity consistency enhancement and introduced a straightforward and efficient method, Cross-Temporal Prediction Connection (TPC), designed to enhance the semantic consistency of logits by connecting them temporally across timesteps. TPC amplifies information flow and improves coherence, effectively reducing hallucination. Extensive experiments show that TPC surpasses existing representatives, delivering superior performance in both accuracy and efficiency while maintaining robustness in open-ended text generation tasks.
GSM-Infinite: How Do Your LLMs Behave over Infinitely Increasing Context Length and Reasoning Complexity?
Zhou, Yang, Liu, Hongyi, Chen, Zhuoming, Tian, Yuandong, Chen, Beidi
Long-context large language models (LLMs) have recently shown strong performance in information retrieval and long-document QA. However, to tackle the most challenging intellectual problems, LLMs must reason effectively in long and complex contexts (e.g., frontier mathematical research). Studying how LLMs handle increasing reasoning complexity and context length is essential, yet existing benchmarks lack a solid basis for quantitative evaluation. Inspired by the abstraction of GSM-8K problems as computational graphs, and the ability to introduce noise by adding unnecessary nodes and edges, we develop a grade school math problem generator capable of producing arithmetic problems with infinite difficulty and context length under fine-grained control. Using our newly synthesized GSM-Infinite benchmark, we comprehensively evaluate existing LLMs. We find a consistent sigmoid decline in reasoning performance as complexity increases, along with a systematic inference scaling trend: exponentially increasing inference computation yields only linear performance gains. These findings underscore the fundamental limitations of current long-context LLMs and the key challenges in scaling reasoning capabilities. Our GSM-Infinite benchmark provides a scalable and controllable testbed for systematically studying and advancing LLM reasoning in long and complex contexts.
Double Distillation Network for Multi-Agent Reinforcement Learning
Zhou, Yang, Wang, Siying, Chen, Wenyu, Zhang, Ruoning, Zhao, Zhitong, Zhang, Zixuan
Multi-agent reinforcement learning typically employs a centralized training-decentralized execution (CTDE) framework to alleviate the non-stationarity in environment. However, the partial observability during execution may lead to cumulative gap errors gathered by agents, impairing the training of effective collaborative policies. To overcome this challenge, we introduce the Double Distillation Network (DDN), which incorporates two distillation modules aimed at enhancing robust coordination and facilitating the collaboration process under constrained information. The external distillation module uses a global guiding network and a local policy network, employing distillation to reconcile the gap between global training and local execution. In addition, the internal distillation module introduces intrinsic rewards, drawn from state information, to enhance the exploration capabilities of agents. Extensive experiments demonstrate that DDN significantly improves performance across multiple scenarios.
Optimistic {\epsilon}-Greedy Exploration for Cooperative Multi-Agent Reinforcement Learning
Zhang, Ruoning, Wang, Siying, Chen, Wenyu, Zhou, Yang, Zhao, Zhitong, Zhang, Zixuan, Zhang, Ruijie
The Centralized Training with Decentralized Execution (CTDE) paradigm is widely used in cooperative multi-agent reinforcement learning. However, due to the representational limitations of traditional monotonic value decomposition methods, algorithms can underestimate optimal actions, leading policies to suboptimal solutions. To address this challenge, we propose Optimistic $\epsilon$-Greedy Exploration, focusing on enhancing exploration to correct value estimations. The underestimation arises from insufficient sampling of optimal actions during exploration, as our analysis indicated. We introduce an optimistic updating network to identify optimal actions and sample actions from its distribution with a probability of $\epsilon$ during exploration, increasing the selection frequency of optimal actions. Experimental results in various environments reveal that the Optimistic $\epsilon$-Greedy Exploration effectively prevents the algorithm from suboptimal solutions and significantly improves its performance compared to other algorithms.
LAYOUTDREAMER: Physics-guided Layout for Text-to-3D Compositional Scene Generation
Zhou, Yang, He, Zongjin, Li, Qixuan, Wang, Chao
Recently, the field of text-guided 3D scene generation has garnered significant attention. High-quality generation that aligns with physical realism and high controllability is crucial for practical 3D scene applications. However, existing methods face fundamental limitations: (i) difficulty capturing complex relationships between multiple objects described in the text, (ii) inability to generate physically plausible scene layouts, and (iii) lack of controllability and extensibility in compositional scenes. In this paper, we introduce LayoutDreamer, a framework that leverages 3D Gaussian Splatting (3DGS) to facilitate high-quality, physically consistent compositional scene generation guided by text. Specifically, given a text prompt, we convert it into a directed scene graph and adaptively adjust the density and layout of the initial compositional 3D Gaussians. Subsequently, dynamic camera adjustments are made based on the training focal point to ensure entity-level generation quality. Finally, by extracting directed dependencies from the scene graph, we tailor physical and layout energy to ensure both realism and flexibility. Comprehensive experiments demonstrate that LayoutDreamer outperforms other compositional scene generation quality and semantic alignment methods. Specifically, it achieves state-of-the-art (SOTA) performance in the multiple objects generation metric of T3Bench.