Zhou, Yan
ExGes: Expressive Human Motion Retrieval and Modulation for Audio-Driven Gesture Synthesis
Zhou, Xukun, Li, Fengxin, Chen, Ming, Zhou, Yan, Wan, Pengfei, Zhang, Di, Jin, Yeying, Fan, Zhaoxin, Liu, Hongyan, He, Jun
Audio-driven human gesture synthesis is a crucial task with broad applications in virtual avatars, human-computer interaction, and creative content generation. Despite notable progress, existing methods often produce gestures that are coarse, lack expressiveness, and fail to fully align with audio semantics. To address these challenges, we propose ExGes, a novel retrieval-enhanced diffusion framework with three key designs: (1) a Motion Base Construction, which builds a gesture library using training dataset; (2) a Motion Retrieval Module, employing constrative learning and momentum distillation for fine-grained reference poses retreiving; and (3) a Precision Control Module, integrating partial masking and stochastic masking to enable flexible and fine-grained control. Experimental evaluations on BEAT2 demonstrate that ExGes reduces Fr\'echet Gesture Distance by 6.2\% and improves motion diversity by 5.3\% over EMAGE, with user studies revealing a 71.3\% preference for its naturalness and semantic relevance. Code will be released upon acceptance.
BayLing 2: A Multilingual Large Language Model with Efficient Language Alignment
Zhang, Shaolei, Zhang, Kehao, Fang, Qingkai, Guo, Shoutao, Zhou, Yan, Liu, Xiaodong, Feng, Yang
Large language models (LLMs), with their powerful generative capabilities and vast knowledge, empower various tasks in everyday life. However, these abilities are primarily concentrated in high-resource languages, leaving low-resource languages with weaker generative capabilities and relatively limited knowledge. Enhancing the multilingual capabilities of LLMs is therefore crucial for serving over 100 linguistic communities worldwide. An intuitive approach to enhance the multilingual capabilities would be to construct instruction data for various languages, but constructing instruction data for over 100 languages is prohibitively costly. In this paper, we introduce BayLing 2, which efficiently transfers generative capabilities and knowledge from high-resource languages to low-resource languages through language alignment. To achieve this, we constructed a dataset of 3.2 million instructions, comprising high-resource language instructions (Chinese and English) and cross-lingual instructions for 100+ languages and performed instruction tuning based on the dataset to facilitate the capability transfer between languages. Using Llama as the foundation model, we developed BayLing-2-7B, BayLing-2-13B, and BayLing-2-8B, and conducted a comprehensive evaluation of BayLing. For multilingual translation across 100+ languages, BayLing shows superior performance compared to open-source models of similar scale. For multilingual knowledge and understanding benchmarks, BayLing achieves significant improvements across over 20 low-resource languages, demonstrating its capability of effective knowledge transfer from high-resource to low-resource languages. Furthermore, results on English benchmarks indicate that BayLing maintains high performance in highresource languages while enhancing the performance in low-resource languages. Demo, homepage, code and models of BayLing are available.
Fast Graph Sharpness-Aware Minimization for Enhancing and Accelerating Few-Shot Node Classification
Luo, Yihong, Chen, Yuhan, Qiu, Siya, Wang, Yiwei, Zhang, Chen, Zhou, Yan, Cao, Xiaochun, Tang, Jing
Graph Neural Networks (GNNs) have shown superior performance in node classification. However, GNNs perform poorly in the Few-Shot Node Classification (FSNC) task that requires robust generalization to make accurate predictions for unseen classes with limited labels. To tackle the challenge, we propose the integration of Sharpness-Aware Minimization (SAM)--a technique designed to enhance model generalization by finding a flat minimum of the loss landscape--into GNN training. The standard SAM approach, however, consists of two forward-backward steps in each training iteration, doubling the computational cost compared to the base optimizer (e.g., Adam). To mitigate this drawback, we introduce a novel algorithm, Fast Graph Sharpness-Aware Minimization (FGSAM), that integrates the rapid training of Multi-Layer Perceptrons (MLPs) with the superior performance of GNNs. Specifically, we utilize GNNs for parameter perturbation while employing MLPs to minimize the perturbed loss so that we can find a flat minimum with good generalization more efficiently. Moreover, our method reutilizes the gradient from the perturbation phase to incorporate graph topology into the minimization process at almost zero additional cost. To further enhance training efficiency, we develop FGSAM+ that executes exact perturbations periodically. Extensive experiments demonstrate that our proposed algorithm outperforms the standard SAM with lower computational costs in FSNC tasks. In particular, our FGSAM+ as a SAM variant offers a faster optimization than the base optimizer in most cases. In addition to FSNC, our proposed methods also demonstrate competitive performance in the standard node classification task for heterophilic graphs, highlighting the broad applicability. The code is available at https://github.com/draym28/FGSAM_NeurIPS24.
LTPNet Integration of Deep Learning and Environmental Decision Support Systems for Renewable Energy Demand Forecasting
Li, Te, Zhang, Mengze, Zhou, Yan
Against the backdrop of increasingly severe global environmental changes, accurately predicting and meeting renewable energy demands has become a key challenge for sustainable business development. Traditional energy demand forecasting methods often struggle with complex data processing and low prediction accuracy. To address these issues, this paper introduces a novel approach that combines deep learning techniques with environmental decision support systems. The model integrates advanced deep learning techniques, including LSTM and Transformer, and PSO algorithm for parameter optimization, significantly enhancing predictive performance and practical applicability. Results show that our model achieves substantial improvements across various metrics, including a 30% reduction in MAE, a 20% decrease in MAPE, a 25% drop in RMSE, and a 35% decline in MSE. These results validate the model's effectiveness and reliability in renewable energy demand forecasting. This research provides valuable insights for applying deep learning in environmental decision support systems.
Holistic Automated Red Teaming for Large Language Models through Top-Down Test Case Generation and Multi-turn Interaction
Zhang, Jinchuan, Zhou, Yan, Liu, Yaxin, Li, Ziming, Hu, Songlin
Automated red teaming is an effective method for identifying misaligned behaviors in large language models (LLMs). Existing approaches, however, often focus primarily on improving attack success rates while overlooking the need for comprehensive test case coverage. Additionally, most of these methods are limited to single-turn red teaming, failing to capture the multi-turn dynamics of real-world human-machine interactions. To overcome these limitations, we propose HARM (Holistic Automated Red teaMing), which scales up the diversity of test cases using a top-down approach based on an extensible, fine-grained risk taxonomy. Our method also leverages a novel fine-tuning strategy and reinforcement learning techniques to facilitate multi-turn adversarial probing in a human-like manner. Experimental results demonstrate that our framework enables a more systematic understanding of model vulnerabilities and offers more targeted guidance for the alignment process.
Deep Learning-based Anomaly Detection and Log Analysis for Computer Networks
Wang, Shuzhan, Jiang, Ruxue, Wang, Zhaoqi, Zhou, Yan
Computer network anomaly detection and log analysis, as an important topic in the field of network security, has been a key task to ensure network security and system reliability. First, existing network anomaly detection and log analysis methods are often challenged by high-dimensional data and complex network topologies, resulting in unstable performance and high false-positive rates. In addition, traditional methods are usually difficult to handle time-series data, which is crucial for anomaly detection and log analysis. Therefore, we need a more efficient and accurate method to cope with these problems. To compensate for the shortcomings of current methods, we propose an innovative fusion model that integrates Isolation Forest, GAN (Generative Adversarial Network), and Transformer with each other, and each of them plays a unique role. Isolation Forest is used to quickly identify anomalous data points, and GAN is used to generate synthetic data with the real data distribution characteristics to augment the training dataset, while the Transformer is used for modeling and context extraction on time series data. The synergy of these three components makes our model more accurate and robust in anomaly detection and log analysis tasks. We validate the effectiveness of this fusion model in an extensive experimental evaluation. Experimental results show that our model significantly improves the accuracy of anomaly detection while reducing the false alarm rate, which helps to detect potential network problems in advance. The model also performs well in the log analysis task and is able to quickly identify anomalous behaviors, which helps to improve the stability of the system. The significance of this study is that it introduces advanced deep learning techniques, which work anomaly detection and log analysis.
Image anomaly detection and prediction scheme based on SSA optimized ResNet50-BiGRU model
Wan, Qianhui, Zhang, Zecheng, Jiang, Liheng, Wang, Zhaoqi, Zhou, Yan
Image anomaly detection is a popular research direction, with many methods emerging in recent years due to rapid advancements in computing. The use of artificial intelligence for image anomaly detection has been widely studied. By analyzing images of athlete posture and movement, it is possible to predict injury status and suggest necessary adjustments. Most existing methods rely on convolutional networks to extract information from irrelevant pixel data, limiting model accuracy. This paper introduces a network combining Residual Network (ResNet) and Bidirectional Gated Recurrent Unit (BiGRU), which can predict potential injury types and provide early warnings by analyzing changes in muscle and bone poses from video images. To address the high complexity of this network, the Sparrow search algorithm was used for optimization. Experiments conducted on four datasets demonstrated that our model has the smallest error in image anomaly detection compared to other models, showing strong adaptability. This provides a new approach for anomaly detection and predictive analysis in images, contributing to the sustainable development of human health and performance.
CTC-based Non-autoregressive Textless Speech-to-Speech Translation
Fang, Qingkai, Ma, Zhengrui, Zhou, Yan, Zhang, Min, Feng, Yang
Direct speech-to-speech translation (S2ST) has achieved impressive translation quality, but it often faces the challenge of slow decoding due to the considerable length of speech sequences. Recently, some research has turned to non-autoregressive (NAR) models to expedite decoding, yet the translation quality typically lags behind autoregressive (AR) models significantly. In this paper, we investigate the performance of CTC-based NAR models in S2ST, as these models have shown impressive results in machine translation. Experimental results demonstrate that by combining pretraining, knowledge distillation, and advanced NAR training techniques such as glancing training and non-monotonic latent alignments, CTC-based NAR models achieve translation quality comparable to the AR model, while preserving up to 26.81$\times$ decoding speedup.
Theoretical Analysis of Meta Reinforcement Learning: Generalization Bounds and Convergence Guarantees
Wang, Cangqing, Sui, Mingxiu, Sun, Dan, Zhang, Zecheng, Zhou, Yan
This research delves deeply into Meta Reinforcement Learning (Meta RL) through a exploration focusing on defining generalization limits and ensuring convergence. By employing a approach this article introduces an innovative theoretical framework to meticulously assess the effectiveness and performance of Meta RL algorithms. We present an explanation of generalization limits measuring how well these algorithms can adapt to learning tasks while maintaining consistent results. Our analysis delves into the factors that impact the adaptability of Meta RL revealing the relationship, between algorithm design and task complexity. Additionally we establish convergence assurances by proving conditions under which Meta RL strategies are guaranteed to converge towards solutions. We examine the convergence behaviors of Meta RL algorithms across scenarios providing a comprehensive understanding of the driving forces behind their long term performance. This exploration covers both convergence and real time efficiency offering a perspective, on the capabilities of these algorithms.
Automatic News Generation and Fact-Checking System Based on Language Processing
Peng, Xirui, Xu, Qiming, Feng, Zheng, Zhao, Haopeng, Tan, Lianghao, Zhou, Yan, Zhang, Zecheng, Gong, Chenwei, Zheng, Yingqiao
This paper explores an automatic news generation and fact-checking system based on language processing, aimed at enhancing the efficiency and quality of news production while ensuring the authenticity and reliability of the news content. With the rapid development of Natural Language Processing (NLP) and deep learning technologies, automatic news generation systems are capable of extracting key information from massive data and generating well-structured, fluent news articles. Meanwhile, by integrating fact-checking technology, the system can effectively prevent the spread of false news and improve the accuracy and credibility of news. This study details the key technologies involved in automatic news generation and factchecking, including text generation, information extraction, and the application of knowledge graphs, and validates the effectiveness of these technologies through experiments. Additionally, the paper discusses the future development directions of automatic news generation and fact-checking systems, emphasizing the importance of further integration and innovation of technologies. The results show that with continuous technological optimization and practical application, these systems will play an increasingly important role in the future news industry, providing more efficient and reliable news services.