Goto

Collaborating Authors

 Zhou, Xuan


Scalable Hierarchical Reinforcement Learning for Hyper Scale Multi-Robot Task Planning

arXiv.org Artificial Intelligence

To improve the efficiency of warehousing system and meet huge customer orders, we aim to solve the challenges of dimension disaster and dynamic properties in hyper scale multi-robot task planning (MRTP) for robotic mobile fulfillment system (RMFS). Existing research indicates that hierarchical reinforcement learning (HRL) is an effective method to reduce these challenges. Based on that, we construct an efficient multi-stage HRL-based multi-robot task planner for hyper scale MRTP in RMFS, and the planning process is represented with a special temporal graph topology. To ensure optimality, the planner is designed with a centralized architecture, but it also brings the challenges of scaling up and generalization that require policies to maintain performance for various unlearned scales and maps. To tackle these difficulties, we first construct a hierarchical temporal attention network (HTAN) to ensure basic ability of handling inputs with unfixed lengths, and then design multi-stage curricula for hierarchical policy learning to further improve the scaling up and generalization ability while avoiding catastrophic forgetting. Additionally, we notice that policies with hierarchical structure suffer from unfair credit assignment that is similar to that in multi-agent reinforcement learning, inspired of which, we propose a hierarchical reinforcement learning algorithm with counterfactual rollout baseline to improve learning performance. Experimental results demonstrate that our planner outperform other state-of-the-art methods on various MRTP instances in both simulated and real-world RMFS. Also, our planner can successfully scale up to hyper scale MRTP instances in RMFS with up to 200 robots and 1000 retrieval racks on unlearned maps while keeping superior performance over other methods.


Towards Automated Cross-domain Exploratory Data Analysis through Large Language Models

arXiv.org Artificial Intelligence

Exploratory data analysis (EDA), coupled with SQL, is essential for data analysts involved in data exploration and analysis. However, data analysts often encounter two primary challenges: (1) the need to craft SQL queries skillfully, and (2) the requirement to generate suitable visualization types that enhance the interpretation of query results. Due to its significance, substantial research efforts have been made to explore different approaches to address these challenges, including leveraging large language models (LLMs). However, existing methods fail to meet real-world data exploration requirements primarily due to (1) complex database schema; (2) unclear user intent; (3) limited cross-domain generalization capability; and (4) insufficient end-to-end text-to-visualization capability. This paper presents TiInsight, an automated SQL-based cross-domain exploratory data analysis system. First, we propose hierarchical data context (i.e., HDC), which leverages LLMs to summarize the contexts related to the database schema, which is crucial for open-world EDA systems to generalize across data domains. Second, the EDA system is divided into four components (i.e., stages): HDC generation, question clarification and decomposition, text-to-SQL generation (i.e., TiSQL), and data visualization (i.e., TiChart). Finally, we implemented an end-to-end EDA system with a user-friendly GUI interface in the production environment at PingCAP. We have also open-sourced all APIs of TiInsight to facilitate research within the EDA community. Through extensive evaluations by a real-world user study, we demonstrate that TiInsight offers remarkable performance compared to human experts. Specifically, TiSQL achieves an execution accuracy of 86.3% on the Spider dataset using GPT-4. It also demonstrates state-of-the-art performance on the Bird dataset.


A Fuzzy-set-based Joint Distribution Adaptation Method for Regression and its Application to Online Damage Quantification for Structural Digital Twin

arXiv.org Artificial Intelligence

Online damage quantification suffers from insufficient labeled data that weakens its accuracy. In this context, adopting the domain adaptation on historical labeled data from similar structures/damages or simulated digital twin data to assist the current diagnosis task would be beneficial. However, most domain adaptation methods are designed for classification and cannot efficiently address damage quantification, a regression problem with continuous real-valued labels. This study first proposes a novel domain adaptation method, the Online Fuzzy-set-based Joint Distribution Adaptation for Regression, to address this challenge. By converting the continuous real-valued labels to fuzzy class labels via fuzzy sets, the marginal and conditional distribution discrepancy are simultaneously measured to achieve the domain adaptation for the damage quantification task. Thanks to the superiority of the proposed method, a state-of-the-art online damage quantification framework based on domain adaptation is presented. Finally, the framework has been comprehensively demonstrated with a damaged helicopter panel, in which three types of damage domain adaptations (across different damage locations, across different damage types, and from simulation to experiment) are all conducted, proving the accuracy of damage quantification can be significantly improved in a realistic environment. It is expected that the proposed approach to be applied to the fleet-level digital twin considering the individual differences.


Deep Reinforcement Learning in a Monetary Model

arXiv.org Machine Learning

We propose using deep reinforcement learning to solve dynamic stochastic general equilibrium models. Agents are represented by deep artificial neural networks and learn to solve their dynamic optimisation problem by interacting with the model environment, of which they have no a priori knowledge. Deep reinforcement learning offers a flexible yet principled way to model bounded rationality within this general class of models. We apply our proposed approach to a classical model from the adaptive learning literature in macroeconomics which looks at the interaction of monetary and fiscal policy. We find that, contrary to adaptive learning, the artificially intelligent household can solve the model in all policy regimes.