Goto

Collaborating Authors

 Zhou, Tengfei


Aggregated Gradient Langevin Dynamics

arXiv.org Machine Learning

In this paper, we explore a general Aggregated Gradient Langevin Dynamics framework (AGLD) for the Markov Chain Monte Carlo (MCMC) sampling. We investigate the nonasymptotic convergence of AGLD with a unified analysis for different data accessing (e.g. random access, cyclic access and random reshuffle) and snapshot updating strategies, under convex and nonconvex settings respectively. It is the first time that bounds for I/O friendly strategies such as cyclic access and random reshuffle have been established in the MCMC literature. The theoretic results also indicate that methods in AGLD possess the merits of both the low per-iteration computational complexity and the short mixture time. Empirical studies demonstrate that our framework allows to derive novel schemes to generate high-quality samples for large-scale Bayesian posterior learning tasks.


Towards More Efficient Stochastic Decentralized Learning: Faster Convergence and Sparse Communication

arXiv.org Machine Learning

Recently, the decentralized optimization problem is attracting growing attention. Most existing methods are deterministic with high per-iteration cost and have a convergence rate quadratically depending on the problem condition number. Besides, the dense communication is necessary to ensure the convergence even if the dataset is sparse. In this paper, we generalize the decentralized optimization problem to a monotone operator root finding problem, and propose a stochastic algorithm named DSBA that (i) converges geometrically with a rate linearly depending on the problem condition number, and (ii) can be implemented using sparse communication only. Additionally, DSBA handles learning problems like AUC-maximization which cannot be tackled efficiently in the decentralized setting. Experiments on convex minimization and AUC-maximization validate the efficiency of our method.


Riemannian Tensor Completion with Side Information

arXiv.org Machine Learning

By restricting the iterate on a nonlinear manifold, the recently proposed Riemannian optimization methods prove to be both efficient and effective in low rank tensor completion problems. However, existing methods fail to exploit the easily accessible side information, due to their format mismatch. Consequently, there is still room for improvement in such methods. To fill the gap, in this paper, a novel Riemannian model is proposed to organically integrate the original model and the side information by overcoming their inconsistency. For this particular model, an efficient Riemannian conjugate gradient descent solver is devised based on a new metric that captures the curvature of the objective.Numerical experiments suggest that our solver is more accurate than the state-of-the-art without compromising the efficiency.


Accelerated Variance Reduced Block Coordinate Descent

arXiv.org Machine Learning

Algorithms with fast convergence, small number of data access, and low per-iteration complexity are particularly favorable in the big data era, due to the demand for obtaining \emph{highly accurate solutions} to problems with \emph{a large number of samples} in \emph{ultra-high} dimensional space. Existing algorithms lack at least one of these qualities, and thus are inefficient in handling such big data challenge. In this paper, we propose a method enjoying all these merits with an accelerated convergence rate $O(\frac{1}{k^2})$. Empirical studies on large scale datasets with more than one million features are conducted to show the effectiveness of our methods in practice.


Fast Hybrid Algorithm for Big Matrix Recovery

AAAI Conferences

Large-scale Nuclear Norm penalized Least Square problem (NNLS) is frequently encountered in estimation of low rank structures. In this paper we accelerate the solution procedure by combining non-smooth convex optimization with smooth Riemannian method. Our methods comprise of two phases. In the first phase, we use Alternating Direction Method of Multipliers (ADMM) both to identify the fix rank manifold where an optimum resides and to provide an initializer for the subsequent refinement. In the second phase, two superlinearly convergent Riemannian methods: Riemannian NewTon (NT) and Riemannian Conjugate Gradient descent (CG) are adopted to improve the approximation over a fix rank manifold. We prove that our Hybrid method of ADMM and NT (HADMNT) converges to an optimum of NNLS at least quadratically. The experiments on large-scale collaborative filtering datasets demonstrate very competitive performance of these fast hybrid methods compared to the state-of-the-arts.