Goto

Collaborating Authors

 Zhou, Song


External Large Foundation Model: How to Efficiently Serve Trillions of Parameters for Online Ads Recommendation

arXiv.org Artificial Intelligence

Ads recommendation is a prominent service of online advertising systems and has been actively studied. Recent studies indicate that scaling-up and advanced design of the recommendation model can bring significant performance improvement. However, with a larger model scale, such prior studies have a significantly increasing gap from industry as they often neglect two fundamental challenges in industrial-scale applications. First, training and inference budgets are restricted for the model to be served, exceeding which may incur latency and impair user experience. Second, large-volume data arrive in a streaming mode with data distributions dynamically shifting, as new users/ads join and existing users/ads leave the system. We propose the External Large Foundation Model (ExFM) framework to address the overlooked challenges. Specifically, we develop external distillation and a data augmentation system (DAS) to control the computational cost of training/inference while maintaining high performance. We design the teacher in a way like a foundation model (FM) that can serve multiple students as vertical models (VMs) to amortize its building cost. We propose Auxiliary Head and Student Adapter to mitigate the data distribution gap between FM and VMs caused by the streaming data issue. Comprehensive experiments on internal industrial-scale applications and public datasets demonstrate significant performance gain by ExFM.


Leveraging Surgical Activity Grammar for Primary Intention Prediction in Laparoscopy Procedures

arXiv.org Artificial Intelligence

Surgical procedures are inherently complex and dynamic, with intricate dependencies and various execution paths. Accurate identification of the intentions behind critical actions, referred to as Primary Intentions (PIs), is crucial to understanding and planning the procedure. This paper presents a novel framework that advances PI recognition in instructional videos by combining top-down grammatical structure with bottom-up visual cues. The grammatical structure is based on a rich corpus of surgical procedures, offering a hierarchical perspective on surgical activities. A grammar parser, utilizing the surgical activity grammar, processes visual data obtained from laparoscopic images through surgical action detectors, ensuring a more precise interpretation of the visual information. Experimental results on the benchmark dataset demonstrate that our method outperforms existing surgical activity detectors that rely solely on visual features. Our research provides a promising foundation for developing advanced robotic surgical systems with enhanced planning and automation capabilities.


Limited Memory Kelley's Method Converges for Composite Convex and Submodular Objectives

Neural Information Processing Systems

The original simplicial method (OSM), a variant of the classic Kelley’s cutting plane method, has been shown to converge to the minimizer of a composite convex and submodular objective, though no rate of convergence for this method was known. Moreover, OSM is required to solve subproblems in each iteration whose size grows linearly in the number of iterations. We propose a limited memory version of Kelley’s method (L-KM) and of OSM that requires limited memory (at most n+ 1 constraints for an n-dimensional problem) independent of the iteration. We prove convergence for L-KM when the convex part of the objective g is strongly convex and show it converges linearly when g is also smooth. Our analysis relies on duality between minimization of the composite convex and submodular objective and minimization of a convex function over the submodular base polytope. We introduce a limited memory version, L-FCFW, of the Fully-Corrective Frank-Wolfe (FCFW) method with approximate correction, to solve the dual problem. We show that L-FCFW and L-KM are dual algorithms that produce the same sequence of iterates; hence both converge linearly (when g is smooth and strongly convex) and with limited memory. We propose L-KM to minimize composite convex and submodular objectives; however, our results on L-FCFW hold for general polytopes and may be of independent interest.


Limited Memory Kelley's Method Converges for Composite Convex and Submodular Objectives

Neural Information Processing Systems

The original simplicial method (OSM), a variant of the classic Kelley’s cutting plane method, has been shown to converge to the minimizer of a composite convex and submodular objective, though no rate of convergence for this method was known. Moreover, OSM is required to solve subproblems in each iteration whose size grows linearly in the number of iterations. We propose a limited memory version of Kelley’s method (L-KM) and of OSM that requires limited memory (at most n+ 1 constraints for an n-dimensional problem) independent of the iteration. We prove convergence for L-KM when the convex part of the objective g is strongly convex and show it converges linearly when g is also smooth. Our analysis relies on duality between minimization of the composite convex and submodular objective and minimization of a convex function over the submodular base polytope. We introduce a limited memory version, L-FCFW, of the Fully-Corrective Frank-Wolfe (FCFW) method with approximate correction, to solve the dual problem. We show that L-FCFW and L-KM are dual algorithms that produce the same sequence of iterates; hence both converge linearly (when g is smooth and strongly convex) and with limited memory. We propose L-KM to minimize composite convex and submodular objectives; however, our results on L-FCFW hold for general polytopes and may be of independent interest.