Goto

Collaborating Authors

 Zhou, Rong


A Survey on Post-training of Large Language Models

arXiv.org Artificial Intelligence

The emergence of Large Language Models (LLMs) has fundamentally transformed natural language processing, making them indispensable across domains ranging from conversational systems to scientific exploration. However, their pre-trained architectures often reveal limitations in specialized contexts, including restricted reasoning capacities, ethical uncertainties, and suboptimal domain-specific performance. These challenges necessitate advanced post-training language models (PoLMs) to address these shortcomings, such as OpenAI-o1/o3 and DeepSeek-R1 (collectively known as Large Reasoning Models, or LRMs). This paper presents the first comprehensive survey of PoLMs, systematically tracing their evolution across five core paradigms: Fine-tuning, which enhances task-specific accuracy; Alignment, which ensures alignment with human preferences; Reasoning, which advances multi-step inference despite challenges in reward design; Efficiency, which optimizes resource utilization amidst increasing complexity; and Integration and Adaptation, which extend capabilities across diverse modalities while addressing coherence issues. Charting progress from ChatGPT's foundational alignment strategies to DeepSeek-R1's innovative reasoning advancements, we illustrate how PoLMs leverage datasets to mitigate biases, deepen reasoning capabilities, and enhance domain adaptability. Our contributions include a pioneering synthesis of PoLM evolution, a structured taxonomy categorizing techniques and datasets, and a strategic agenda emphasizing the role of LRMs in improving reasoning proficiency and domain flexibility. As the first survey of its scope, this work consolidates recent PoLM advancements and establishes a rigorous intellectual framework for future research, fostering the development of LLMs that excel in precision, ethical robustness, and versatility across scientific and societal applications.


ClusMFL: A Cluster-Enhanced Framework for Modality-Incomplete Multimodal Federated Learning in Brain Imaging Analysis

arXiv.org Artificial Intelligence

Multimodal Federated Learning (MFL) has emerged as a promising approach for collaboratively training multimodal models across distributed clients, particularly in healthcare domains. In the context of brain imaging analysis, modality incompleteness presents a significant challenge, where some institutions may lack specific imaging modalities (e.g., PET, MRI, or CT) due to privacy concerns, device limitations, or data availability issues. While existing work typically assumes modality completeness or oversimplifies missing-modality scenarios, we simulate a more realistic setting by considering both client-level and instance-level modality incompleteness in this study. Building on this realistic simulation, we propose ClusMFL, a novel MFL framework that leverages feature clustering for cross-institutional brain imaging analysis under modality incompleteness. Specifically, ClusMFL utilizes the FINCH algorithm to construct a pool of cluster centers for the feature embeddings of each modality-label pair, effectively capturing fine-grained data distributions. These cluster centers are then used for feature alignment within each modality through supervised contrastive learning, while also acting as proxies for missing modalities, allowing cross-modal knowledge transfer. Furthermore, ClusMFL employs a modality-aware aggregation strategy, further enhancing the model's performance in scenarios with severe modality incompleteness. We evaluate the proposed framework on the ADNI dataset, utilizing structural MRI and PET scans. Extensive experimental results demonstrate that ClusMFL achieves state-of-the-art performance compared to various baseline methods across varying levels of modality incompleteness, providing a scalable solution for cross-institutional brain imaging analysis.


Normative Modeling for AD Diagnosis and Biomarker Identification

arXiv.org Artificial Intelligence

In this paper, we introduce a novel normative modeling approach that incorporates focal loss and adversarial autoencoders (FAAE) for Alzheimer's Disease (AD) diagnosis and biomarker identification. Our method is an end-to-end approach that embeds an adversarial focal loss discriminator within the autoencoder structure, specifically designed to effectively target and capture more complex and challenging cases. We first use the enhanced autoencoder to create a normative model based on data from healthy control (HC) individuals. We then apply this model to estimate total and regional neuroanatomical deviation in AD patients. Through extensive experiments on the OASIS-3 and ADNI datasets, our approach significantly outperforms previous state-of-the-art methods. This advancement not only streamlines the detection process but also provides a greater insight into the biomarker potential for AD. Our code can be found at \url{https://github.com/soz223/FAAE}.


Unleashing the Power of Multi-Task Learning: A Comprehensive Survey Spanning Traditional, Deep, and Pretrained Foundation Model Eras

arXiv.org Artificial Intelligence

MTL is a learning paradigm that effectively leverages both task-specific and shared information to address multiple related tasks simultaneously. In contrast to STL, MTL offers a suite of benefits that enhance both the training process and the inference efficiency. MTL's key advantages encompass streamlined model architecture, performance enhancement, and cross-domain generalizability. Over the past twenty years, MTL has become widely recognized as a flexible and effective approach in various fields, including CV, NLP, recommendation systems, disease prognosis and diagnosis, and robotics. This survey provides a comprehensive overview of the evolution of MTL, encompassing the technical aspects of cutting-edge methods from traditional approaches to deep learning and the latest trend of pretrained foundation models. Our survey methodically categorizes MTL techniques into five key areas: regularization, relationship learning, feature propagation, optimization, and pre-training. This categorization not only chronologically outlines the development of MTL but also dives into various specialized strategies within each category. Furthermore, the survey reveals how the MTL evolves from handling a fixed set of tasks to embracing a more flexible approach free from task or modality constraints. It explores the concepts of task-promptable and -agnostic training, along with the capacity for ZSL, which unleashes the untapped potential of this historically coveted learning paradigm. Overall, we hope this survey provides the research community with a comprehensive overview of the advancements in MTL from its inception in 1997 to the present in 2023. We address present challenges and look ahead to future possibilities, shedding light on the opportunities and potential avenues for MTL research in a broad manner. This project is publicly available at https://github.com/junfish/Awesome-Multitask-Learning.


BiomedGPT: A Unified and Generalist Biomedical Generative Pre-trained Transformer for Vision, Language, and Multimodal Tasks

arXiv.org Artificial Intelligence

Conventional task- and modality-specific artificial intelligence (AI) models are inflexible in real-world deployment and maintenance for biomedicine. At the same time, the growing availability of biomedical data, coupled with the advancements in modern multi-modal multi-task AI techniques, has paved the way for the emergence of generalist biomedical AI solutions. These solutions hold the potential to interpret different medical modalities and produce expressive outputs such as free-text reports or disease diagnosis. Here, we propose BiomedGPT, the first open-source and generalist visual language AI for diverse biomedical tasks. BiomedGPT achieved 16 state-of-the-art results across five clinically significant tasks on 26 datasets. Notably, it outperformed OpenAI's GPT-4 with vision (GPT-4V) in radiology human evaluation and surpassed Google's Med-PaLM M (12B) in breast cancer diagnosis and medical visual question answering. Moreover, BiomedGPT facilitates zero-shot transfer learning, greatly enhancing its utility as a biomedical assistant, similar to ChatGPT. Our method demonstrates effective training with diverse datasets can lead to more practical biomedical AI.


Normative Modeling via Conditional Variational Autoencoder and Adversarial Learning to Identify Brain Dysfunction in Alzheimer's Disease

arXiv.org Artificial Intelligence

Normative modeling is an emerging and promising approach to effectively study disorder heterogeneity in individual participants. In this study, we propose a novel normative modeling method by combining conditional variational autoencoder with adversarial learning (ACVAE) to identify brain dysfunction in Alzheimer's Disease (AD). Specifically, we first train a conditional VAE on the healthy control (HC) group to create a normative model conditioned on covariates like age, gender and intracranial volume. Then we incorporate an adversarial training process to construct a discriminative feature space that can better generalize to unseen data. Finally, we compute deviations from the normal criterion at the patient level to determine which brain regions were associated with AD. Our experiments on OASIS-3 database show that the deviation maps generated by our model exhibit higher sensitivity to AD compared to other deep normative models, and are able to better identify differences between the AD and HC groups.


Learning Role-based Graph Embeddings

arXiv.org Machine Learning

Random walks are at the heart of many existing network embedding methods. However, such algorithms have many limitations that arise from the use of random walks, e.g., the features resulting from these methods are unable to transfer to new nodes and graphs as they are tied to vertex identity. In this work, we introduce the Role2Vec framework which uses the flexible notion of attributed random walks, and serves as a basis for generalizing existing methods such as DeepWalk, node2vec, and many others that leverage random walks. Our proposed framework enables these methods to be more widely applicable for both transductive and inductive learning as well as for use on graphs with attributes (if available). This is achieved by learning functions that generalize to new nodes and graphs. We show that our proposed framework is effective with an average AUC improvement of 16.55% while requiring on average 853x less space than existing methods on a variety of graphs.


Inductive Representation Learning in Large Attributed Graphs

arXiv.org Machine Learning

Graphs (networks) are ubiquitous and allow us to model entities (nodes) and the dependencies (edges) between them. Learning a useful feature representation from graph data lies at the heart and success of many machine learning tasks such as classification, anomaly detection, link prediction, among many others. Many existing techniques use random walks as a basis for learning features or estimating the parameters of a graph model for a downstream prediction task. Examples include recent node embedding methods such as DeepWalk, node2vec, as well as graph-based deep learning algorithms. However, the simple random walk used by these methods is fundamentally tied to the identity of the node. This has three main disadvantages. First, these approaches are inherently transductive and do not generalize to unseen nodes and other graphs. Second, they are not space-efficient as a feature vector is learned for each node which is impractical for large graphs. Third, most of these approaches lack support for attributed graphs. To make these methods more generally applicable, we propose a framework for inductive network representation learning based on the notion of attributed random walk that is not tied to node identity and is instead based on learning a function $\Phi : \mathrm{\rm \bf x} \rightarrow w$ that maps a node attribute vector $\mathrm{\rm \bf x}$ to a type $w$. This framework serves as a basis for generalizing existing methods such as DeepWalk, node2vec, and many other previous methods that leverage traditional random walks.


Similarity-based Multi-label Learning

arXiv.org Machine Learning

Multi-label classification is an important learning problem with many applications. In this work, we propose a principled similarity-based approach for multi-label learning called SML. We also introduce a similarity-based approach for predicting the label set size. The experimental results demonstrate the effectiveness of SML for multi-label classification where it is shown to compare favorably with a wide variety of existing algorithms across a range of evaluation criterion.


Deep Feature Learning for Graphs

arXiv.org Machine Learning

This paper presents a general graph representation learning framework called DeepGL for learning deep node and edge representations from large (attributed) graphs. In particular, DeepGL begins by deriving a set of base features (e.g., graphlet features) and automatically learns a multi-layered hierarchical graph representation where each successive layer leverages the output from the previous layer to learn features of a higher-order. Contrary to previous work, DeepGL learns relational functions (each representing a feature) that generalize across-networks and therefore useful for graph-based transfer learning tasks. Moreover, DeepGL naturally supports attributed graphs, learns interpretable features, and is space-efficient (by learning sparse feature vectors). In addition, DeepGL is expressive, flexible with many interchangeable components, efficient with a time complexity of $\mathcal{O}(|E|)$, and scalable for large networks via an efficient parallel implementation. Compared with the state-of-the-art method, DeepGL is (1) effective for across-network transfer learning tasks and attributed graph representation learning, (2) space-efficient requiring up to 6x less memory, (3) fast with up to 182x speedup in runtime performance, and (4) accurate with an average improvement of 20% or more on many learning tasks.