Goto

Collaborating Authors

 Zhou, Leming


Generative AI Is Not Ready for Clinical Use in Patient Education for Lower Back Pain Patients, Even With Retrieval-Augmented Generation

arXiv.org Artificial Intelligence

Low back pain (LBP) is a leading cause of disability globally. Following the onset of LBP and subsequent treatment, adequate patient education is crucial for improving functionality and long-term outcomes. Despite advancements in patient education strategies, significant gaps persist in delivering personalized, evidence-based information to patients with LBP. Recent advancements in large language models (LLMs) and generative artificial intelligence (GenAI) have demonstrated the potential to enhance patient education. However, their application and efficacy in delivering educational content to patients with LBP remain underexplored and warrant further investigation. In this study, we introduce a novel approach utilizing LLMs with Retrieval-Augmented Generation (RAG) and few-shot learning to generate tailored educational materials for patients with LBP. Physical therapists manually evaluated our model responses for redundancy, accuracy, and completeness using a Likert scale. In addition, the readability of the generated education materials is assessed using the Flesch Reading Ease score. The findings demonstrate that RAG-based LLMs outperform traditional LLMs, providing more accurate, complete, and readable patient education materials with less redundancy. Having said that, our analysis reveals that the generated materials are not yet ready for use in clinical practice. This study underscores the potential of AI-driven models utilizing RAG to improve patient education for LBP; however, significant challenges remain in ensuring the clinical relevance and granularity of content generated by these models.


Automated Fidelity Assessment for Strategy Training in Inpatient Rehabilitation using Natural Language Processing

arXiv.org Artificial Intelligence

Strategy training is a multidisciplinary rehabilitation approach that teaches skills to reduce disability among those with cognitive impairments following a stroke. Strategy training has been shown in randomized, controlled clinical trials to be a more feasible and efficacious intervention for promoting independence than traditional rehabilitation approaches. A standardized fidelity assessment is used to measure adherence to treatment principles by examining guided and directed verbal cues in video recordings of rehabilitation sessions. Although the fidelity assessment for detecting guided and directed verbal cues is valid and feasible for single-site studies, it can become labor intensive, time consuming, and expensive in large, multi-site pragmatic trials. To address this challenge to widespread strategy training implementation, we leveraged natural language processing (NLP) techniques to automate the strategy training fidelity assessment, i.e., to automatically identify guided and directed verbal cues from video recordings of rehabilitation sessions. We developed a rule-based NLP algorithm, a long-short term memory (LSTM) model, and a bidirectional encoder representation from transformers (BERT) model for this task. The best performance was achieved by the BERT model with a 0.8075 F1-score. This BERT model was verified on an external validation dataset collected from a separate major regional health system and achieved an F1 score of 0.8259, which shows that the BERT model generalizes well. Introduction Stroke is a leading cause of disability in the United States. Meta-cognitive strategy training (henceforth referred to as strategy training) is a multidisciplinary rehabilitation approach that teaches skills to reduce disability among those with cognitive impairments following a stroke.