Zhou, Kang
A Systematic Survey of Automatic Prompt Optimization Techniques
Ramnath, Kiran, Zhou, Kang, Guan, Sheng, Mishra, Soumya Smruti, Qi, Xuan, Shen, Zhengyuan, Wang, Shuai, Woo, Sangmin, Jeoung, Sullam, Wang, Yawei, Wang, Haozhu, Ding, Han, Lu, Yuzhe, Xu, Zhichao, Zhou, Yun, Srinivasan, Balasubramaniam, Yan, Qiaojing, Chen, Yueyan, Ding, Haibo, Xu, Panpan, Cheong, Lin Lee
Since the advent of large language models (LLMs), prompt engineering has been a crucial step for eliciting desired responses for various Natural Language Processing (NLP) tasks. However, prompt engineering remains an impediment for end users due to rapid advances in models, tasks, and associated best practices. To mitigate this, Automatic Prompt Optimization (APO) techniques have recently emerged that use various automated techniques to help improve the performance of LLMs on various tasks. In this paper, we present a comprehensive survey summarizing the current progress and remaining challenges in this field. We provide a formal definition of APO, a 5-part unifying framework, and then proceed to rigorously categorize all relevant works based on their salient features therein. We hope to spur further research guided by our framework.
Bridge: A Unified Framework to Knowledge Graph Completion via Language Models and Knowledge Representation
Qiao, Qiao, Li, Yuepei, Wang, Qing, Zhou, Kang, Li, Qi
Knowledge graph completion (KGC) is a task of inferring missing triples based on existing Knowledge Graphs (KGs). Both structural and semantic information are vital for successful KGC. However, existing methods only use either the structural knowledge from the KG embeddings or the semantic information from pre-trained language models (PLMs), leading to suboptimal model performance. Moreover, since PLMs are not trained on KGs, directly using PLMs to encode triples may be inappropriate. To overcome these limitations, we propose a novel framework called Bridge, which jointly encodes structural and semantic information of KGs. Specifically, we strategically encode entities and relations separately by PLMs to better utilize the semantic knowledge of PLMs and enable structured representation learning via a structural learning principle. Furthermore, to bridge the gap between KGs and PLMs, we employ a self-supervised representation learning method called BYOL to fine-tune PLMs with two different views of a triple. Unlike BYOL, which uses augmentation methods to create two semantically similar views of the same image, potentially altering the semantic information. We strategically separate the triple into two parts to create different views, thus avoiding semantic alteration. Experiments demonstrate that Bridge outperforms the SOTA models on three benchmark datasets.
Weakly-supervised Medical Image Segmentation with Gaze Annotations
Zhong, Yuan, Tang, Chenhui, Yang, Yumeng, Qi, Ruoxi, Zhou, Kang, Gong, Yuqi, Heng, Pheng Ann, Hsiao, Janet H., Dou, Qi
Eye gaze that reveals human observational patterns has increasingly been incorporated into solutions for vision tasks. Despite recent explorations on leveraging gaze to aid deep networks, few studies exploit gaze as an efficient annotation approach for medical image segmentation which typically entails heavy annotating costs. In this paper, we propose to collect dense weak supervision for medical image segmentation with a gaze annotation scheme. To train with gaze, we propose a multi-level framework that trains multiple networks from discriminative human attention, simulated with a set of pseudo-masks derived by applying hierarchical thresholds on gaze heatmaps. Furthermore, to mitigate gaze noise, a cross-level consistency is exploited to regularize overfitting noisy labels, steering models toward clean patterns learned by peer networks. The proposed method is validated on two public medical datasets of polyp and prostate segmentation tasks. We contribute a high-quality gaze dataset entitled GazeMedSeg as an extension to the popular medical segmentation datasets. To the best of our knowledge, this is the first gaze dataset for medical image segmentation. Our experiments demonstrate that gaze annotation outperforms previous label-efficient annotation schemes in terms of both performance and annotation time.
Re-Examine Distantly Supervised NER: A New Benchmark and a Simple Approach
Li, Yuepei, Zhou, Kang, Qiao, Qiao, Wang, Qing, Li, Qi
This paper delves into Named Entity Recognition (NER) under the framework of Distant Supervision (DS-NER), where the main challenge lies in the compromised quality of labels due to inherent errors such as false positives, false negatives, and positive type errors. We critically assess the efficacy of current DS-NER methodologies using a real-world benchmark dataset named QTL, revealing that their performance often does not meet expectations. To tackle the prevalent issue of label noise, we introduce a simple yet effective approach, Curriculum-based Positive-Unlabeled Learning CuPUL, which strategically starts on "easy" and cleaner samples during the training process to enhance model resilience to noisy samples. Our empirical results highlight the capability of CuPUL to significantly reduce the impact of noisy labels and outperform existing methods. QTL dataset and our code is available on GitHub.
Improving Unsupervised Relation Extraction by Augmenting Diverse Sentence Pairs
Wang, Qing, Zhou, Kang, Qiao, Qiao, Li, Yuepei, Li, Qi
Unsupervised relation extraction (URE) aims to extract relations between named entities from raw text without requiring manual annotations or pre-existing knowledge bases. In recent studies of URE, researchers put a notable emphasis on contrastive learning strategies for acquiring relation representations. However, these studies often overlook two important aspects: the inclusion of diverse positive pairs for contrastive learning and the exploration of appropriate loss functions. In this paper, we propose AugURE with both within-sentence pairs augmentation and augmentation through cross-sentence pairs extraction to increase the diversity of positive pairs and strengthen the discriminative power of contrastive learning. We also identify the limitation of noise-contrastive estimation (NCE) loss for relation representation learning and propose to apply margin loss for sentence pairs. Experiments on NYT-FB and TACRED datasets demonstrate that the proposed relation representation learning and a simple K-Means clustering achieves state-of-the-art performance.
LLMRec: Benchmarking Large Language Models on Recommendation Task
Liu, Junling, Liu, Chao, Zhou, Peilin, Ye, Qichen, Chong, Dading, Zhou, Kang, Xie, Yueqi, Cao, Yuwei, Wang, Shoujin, You, Chenyu, Yu, Philip S.
Recently, the fast development of Large Language Models (LLMs) such as ChatGPT has significantly advanced NLP tasks by enhancing the capabilities of conversational models. However, the application of LLMs in the recommendation domain has not been thoroughly investigated. To bridge this gap, we propose LLMRec, a LLM-based recommender system designed for benchmarking LLMs on various recommendation tasks. Specifically, we benchmark several popular off-the-shelf LLMs, such as ChatGPT, LLaMA, ChatGLM, on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization. Furthermore, we investigate the effectiveness of supervised finetuning to improve LLMs' instruction compliance ability. The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation. However, they demonstrated comparable performance to state-of-the-art methods in explainability-based tasks. We also conduct qualitative evaluations to further evaluate the quality of contents generated by different models, and the results show that LLMs can truly understand the provided information and generate clearer and more reasonable results. We aspire that this benchmark will serve as an inspiration for researchers to delve deeper into the potential of LLMs in enhancing recommendation performance. Our codes, processed data and benchmark results are available at https://github.com/williamliujl/LLMRec.
Relation-Aware Network with Attention-Based Loss for Few-Shot Knowledge Graph Completion
Qiao, Qiao, Li, Yuepei, Zhou, Kang, Li, Qi
Few-shot knowledge graph completion (FKGC) task aims to predict unseen facts of a relation with few-shot reference entity pairs. Current approaches randomly select one negative sample for each reference entity pair to minimize a margin-based ranking loss, which easily leads to a zero-loss problem if the negative sample is far away from the positive sample and then out of the margin. Moreover, the entity should have a different representation under a different context. To tackle these issues, we propose a novel Relation-Aware Network with Attention-Based Loss (RANA) framework. Specifically, to better utilize the plentiful negative samples and alleviate the zero-loss issue, we strategically select relevant negative samples and design an attention-based loss function to further differentiate the importance of each negative sample. The intuition is that negative samples more similar to positive samples will contribute more to the model. Further, we design a dynamic relation-aware entity encoder for learning a context-dependent entity representation. Experiments demonstrate that RANA outperforms the state-of-the-art models on two benchmark datasets.