Goto

Collaborating Authors

 Zhou, Jing


Leveraging Black-box Models to Assess Feature Importance in Unconditional Distribution

arXiv.org Machine Learning

Understanding how changes in explanatory features affect the unconditional distribution of the outcome is important in many applications. However, existing black-box predictive models are not readily suited for analyzing such questions. In this work, we develop an approximation method to compute the feature importance curves relevant to the unconditional distribution of outcomes, while leveraging the power of pre-trained black-box predictive models. The feature importance curves measure the changes across quantiles of outcome distribution given an external impact of change in the explanatory features. Through extensive numerical experiments and real data examples, we demonstrate that our approximation method produces sparse and faithful results, and is computationally efficient.


A Selective Review on Statistical Methods for Massive Data Computation: Distributed Computing, Subsampling, and Minibatch Techniques

arXiv.org Artificial Intelligence

This paper presents a selective review of statistical computation methods for massive data analysis. A huge amount of statistical methods for massive data computation have been rapidly developed in the past decades. In this work, we focus on three categories of statistical computation methods: (1) distributed computing, (2) subsampling methods, and (3) minibatch gradient techniques. The first class of literature is about distributed computing and focuses on the situation, where the dataset size is too huge to be comfortably handled by one single computer. In this case, a distributed computation system with multiple computers has to be utilized. The second class of literature is about subsampling methods and concerns about the situation, where the sample size of dataset is small enough to be placed on one single computer but too large to be easily processed by its memory as a whole. The last class of literature studies those minibatch gradient related optimization techniques, which have been extensively used for optimizing various deep learning models.


Inferring Intentions to Speak Using Accelerometer Data In-the-Wild

arXiv.org Artificial Intelligence

Humans have good natural intuition to recognize when another person has something to say. It would be interesting if an AI can also recognize intentions to speak. Especially in scenarios when an AI is guiding a group discussion, this can be a useful skill. This work studies the inference of successful and unsuccessful intentions to speak from accelerometer data. This is chosen because it is privacy-preserving and feasible for in-the-wild settings since it can be placed in a smart badge. Data from a real-life social networking event is used to train a machine-learning model that aims to infer intentions to speak. A subset of unsuccessful intention-to-speak cases in the data is annotated. The model is trained on the successful intentions to speak and evaluated on both the successful and unsuccessful cases. In conclusion, there is useful information in accelerometer data, but not enough to reliably capture intentions to speak. For example, posture shifts are correlated with intentions to speak, but people also often shift posture without having an intention to speak, or have an intention to speak without shifting their posture. More modalities are likely needed to reliably infer intentions to speak.


LasTGL: An Industrial Framework for Large-Scale Temporal Graph Learning

arXiv.org Artificial Intelligence

Over the past few years, graph neural networks (GNNs) have become powerful and practical tools for learning on (static) graph-structure data. However, many real-world applications, such as social networks and e-commerce, involve temporal graphs where nodes and edges are dynamically evolving. Temporal graph neural networks (TGNNs) have progressively emerged as an extension of GNNs to address time-evolving graphs and have gradually become a trending research topic in both academics and industry. Advancing research and application in such an emerging field necessitates the development of new tools to compose TGNN models and unify their different schemes for dealing with temporal graphs. In this work, we introduce LasTGL, an industrial framework that integrates unified and extensible implementations of common temporal graph learning algorithms for various advanced tasks. The purpose of LasTGL is to provide the essential building blocks for solving temporal graph learning tasks, focusing on the guiding principles of user-friendliness and quick prototyping on which PyTorch is based. In particular, LasTGL provides comprehensive temporal graph datasets, TGNN models and utilities along with well-documented tutorials, making it suitable for both absolute beginners and expert deep learning practitioners alike.


Hetero$^2$Net: Heterophily-aware Representation Learning on Heterogenerous Graphs

arXiv.org Artificial Intelligence

Real-world graphs are typically complex, exhibiting heterogeneity in the global structure, as well as strong heterophily within local neighborhoods. While a growing body of literature has revealed the limitations of common graph neural networks (GNNs) in handling homogeneous graphs with heterophily, little work has been conducted on investigating the heterophily properties in the context of heterogeneous graphs. To bridge this research gap, we identify the heterophily in heterogeneous graphs using metapaths and propose two practical metrics to quantitatively describe the levels of heterophily. Through in-depth investigations on several real-world heterogeneous graphs exhibiting varying levels of heterophily, we have observed that heterogeneous graph neural networks (HGNNs), which inherit many mechanisms from GNNs designed for homogeneous graphs, fail to generalize to heterogeneous graphs with heterophily or low level of homophily. To address the challenge, we present Hetero$^2$Net, a heterophily-aware HGNN that incorporates both masked metapath prediction and masked label prediction tasks to effectively and flexibly handle both homophilic and heterophilic heterogeneous graphs. We evaluate the performance of Hetero$^2$Net on five real-world heterogeneous graph benchmarks with varying levels of heterophily. The results demonstrate that Hetero$^2$Net outperforms strong baselines in the semi-supervised node classification task, providing valuable insights into effectively handling more complex heterogeneous graphs.


A Universal Discriminator for Zero-Shot Generalization

arXiv.org Artificial Intelligence

Generative modeling has been the dominant approach for large-scale pretraining and zero-shot generalization. In this work, we challenge this convention by showing that discriminative approaches perform substantially better than generative ones on a large number of NLP tasks. Technically, we train a single discriminator to predict whether a text sample comes from the true data distribution, similar to GANs. Since many NLP tasks can be formulated as selecting from a few options, we use this discriminator to predict the concatenation of input and which option has the highest probability of coming from the true data distribution. This simple formulation achieves state-of-the-art zero-shot results on the T0 benchmark, outperforming T0 by 16.0\%, 7.8\%, and 11.5\% respectively on different scales. In the finetuning setting, our approach also achieves new state-of-the-art results on a wide range of NLP tasks, with only 1/4 parameters of previous methods. Meanwhile, our approach requires minimal prompting efforts, which largely improves robustness and is essential for real-world applications. Furthermore, we also jointly train a generalized UD in combination with generative tasks, which maintains its advantage on discriminative tasks and simultaneously works on generative tasks.


Embedding Compression for Text Classification Using Dictionary Screening

arXiv.org Artificial Intelligence

In this paper, we propose a dictionary screening method for embedding compression in text classification tasks. The key purpose of this method is to evaluate the importance of each keyword in the dictionary. To this end, we first train a pre-specified recurrent neural network-based model using a full dictionary. This leads to a benchmark model, which we then use to obtain the predicted class probabilities for each sample in a dataset. Next, to evaluate the impact of each keyword in affecting the predicted class probabilities, we develop a novel method for assessing the importance of each keyword in a dictionary. Consequently, each keyword can be screened, and only the most important keywords are reserved. With these screened keywords, a new dictionary with a considerably reduced size can be constructed. Accordingly, the original text sequence can be substantially compressed. The proposed method leads to significant reductions in terms of parameters, average text sequence, and dictionary size. Meanwhile, the prediction power remains very competitive compared to the benchmark model. Extensive numerical studies are presented to demonstrate the empirical performance of the proposed method.


Automatic Product Copywriting for E-Commerce

arXiv.org Artificial Intelligence

Product copywriting is a critical component of e-commerce recommendation platforms. It aims to attract users' interest and improve user experience by highlighting product characteristics with textual descriptions. In this paper, we report our experience deploying the proposed Automatic Product Copywriting Generation (APCG) system into the JD.com e-commerce product recommendation platform. It consists of two main components: 1) natural language generation, which is built from a transformer-pointer network and a pre-trained sequence-to-sequence model based on millions of training data from our in-house platform; and 2) copywriting quality control, which is based on both automatic evaluation and human screening. For selected domains, the models are trained and updated daily with the updated training data. In addition, the model is also used as a real-time writing assistant tool on our live broadcast platform. The APCG system has been deployed in JD.com since Feb 2021. By Sep 2021, it has generated 2.53 million product descriptions, and improved the overall averaged click-through rate (CTR) and the Conversion Rate (CVR) by 4.22% and 3.61%, compared to baselines, respectively on a year-on-year basis. The accumulated Gross Merchandise Volume (GMV) made by our system is improved by 213.42%, compared to the number in Feb 2021.


Meta-Auto-Decoder for Solving Parametric Partial Differential Equations

arXiv.org Artificial Intelligence

Partial Differential Equations (PDEs) are ubiquitous in many disciplines of science and engineering and notoriously difficult to solve. In general, closed-form solutions of PDEs are unavailable and numerical approximation methods are computationally expensive. The parameters of PDEs are variable in many applications, such as inverse problems, control and optimization, risk assessment, and uncertainty quantification. In these applications, our goal is to solve parametric PDEs rather than one instance of them. Our proposed approach, called Meta-Auto-Decoder (MAD), treats solving parametric PDEs as a meta-learning problem and utilizes the Auto-Decoder structure in \cite{park2019deepsdf} to deal with different tasks/PDEs. Physics-informed losses induced from the PDE governing equations and boundary conditions is used as the training losses for different tasks. The goal of MAD is to learn a good model initialization that can generalize across different tasks, and eventually enables the unseen task to be learned faster. The inspiration of MAD comes from (conjectured) low-dimensional structure of parametric PDE solutions and we explain our approach from the perspective of manifold learning. Finally, we demonstrate the power of MAD though extensive numerical studies, including Burgers' equation, Laplace's equation and time-domain Maxwell's equations. MAD exhibits faster convergence speed without losing the accuracy compared with other deep learning methods.


Solving Partial Differential Equations with Point Source Based on Physics-Informed Neural Networks

arXiv.org Artificial Intelligence

In recent years, deep learning technology has been used to solve partial differential equations (PDEs), among which the physics-informed neural networks (PINNs) emerges to be a promising method for solving both forward and inverse PDE problems. PDEs with a point source that is expressed as a Dirac delta function in the governing equations are mathematical models of many physical processes. However, they cannot be solved directly by conventional PINNs method due to the singularity brought by the Dirac delta function. We propose a universal solution to tackle this problem with three novel techniques. Firstly the Dirac delta function is modeled as a continuous probability density function to eliminate the singularity; secondly a lower bound constrained uncertainty weighting algorithm is proposed to balance the PINNs losses between point source area and other areas; and thirdly a multi-scale deep neural network with periodic activation function is used to improve the accuracy and convergence speed of the PINNs method. We evaluate the proposed method with three representative PDEs, and the experimental results show that our method outperforms existing deep learning-based methods with respect to the accuracy, the efficiency and the versatility.