Zhou, Jiawei
From Head to Tail: Towards Balanced Representation in Large Vision-Language Models through Adaptive Data Calibration
Song, Mingyang, Qu, Xiaoye, Zhou, Jiawei, Cheng, Yu
Large Vision-Language Models (LVLMs) have achieved significant progress in combining visual comprehension with language generation. Despite this success, the training data of LVLMs still suffers from Long-Tail (LT) problems, where the data distribution is highly imbalanced. Previous works have mainly focused on traditional VLM architectures, i.e., CLIP or ViT, and specific tasks such as recognition and classification. Nevertheless, the exploration of LVLM (e.g. LLaVA) and more general tasks (e.g. Visual Question Answering and Visual Reasoning) remains under-explored. In this paper, we first conduct an in-depth analysis of the LT issues in LVLMs and identify two core causes: the overrepresentation of head concepts and the underrepresentation of tail concepts. Based on the above observation, we propose an $\textbf{A}$daptive $\textbf{D}$ata $\textbf{R}$efinement Framework ($\textbf{ADR}$), which consists of two stages: $\textbf{D}$ata $\textbf{R}$ebalancing ($\textbf{DR}$) and $\textbf{D}$ata $\textbf{S}$ynthesis ($\textbf{DS}$). In the DR stage, we adaptively rebalance the redundant data based on entity distributions, while in the DS stage, we leverage Denoising Diffusion Probabilistic Models (DDPMs) and scarce images to supplement underrepresented portions. Through comprehensive evaluations across eleven benchmarks, our proposed ADR effectively mitigates the long-tail problem in the training data, improving the average performance of LLaVA 1.5 relatively by 4.36%, without increasing the training data volume.
OpenRAG: Optimizing RAG End-to-End via In-Context Retrieval Learning
Zhou, Jiawei, Chen, Lei
In this paper, we analyze and empirically show that the learned relevance for conventional information retrieval (IR) scenarios may be inconsistent in retrieval-augmented generation (RAG) scenarios. To bridge this gap, we introduce OpenRAG, a RAG framework that is optimized end-to-end by tuning the retriever to capture in-context relevance, enabling adaptation to the diverse and evolving needs. Extensive experiments across a wide range of tasks demonstrate that OpenRAG, by tuning a retriever end-to-end, leads to a consistent improvement of 4.0% over the original retriever, consistently outperforming existing state-of-the-art retrievers by 2.1%. Additionally, our results indicate that for some tasks, an end-to-end tuned 0.2B retriever can achieve improvements that surpass those of RAG-oriented or instruction-tuned 8B large language models (LLMs), highlighting the cost-effectiveness of our approach in enhancing RAG systems.
PRMBench: A Fine-grained and Challenging Benchmark for Process-Level Reward Models
Song, Mingyang, Su, Zhaochen, Qu, Xiaoye, Zhou, Jiawei, Cheng, Yu
Process-level Reward Models (PRMs) are crucial for complex reasoning and decision-making tasks, where each intermediate step plays an important role in the reasoning process. Since language models are prone to various types of errors during the reasoning process, PRMs are required to possess nuanced capabilities for detecting various implicit error types in real-world scenarios. However, current benchmarks primarily focus on step correctness, failing to evaluate PRMs' performance systematically. To address this gap, we introduce PRMBench, a process-level benchmark specifically designed to assess the fine-grained error detection capabilities of PRMs. PRMBench comprises 6,216 carefully designed problems and 83,456 step-level labels, evaluating models across multiple dimensions, including simplicity, soundness, and sensitivity. In our experiments on 15 models, spanning both open-source PRMs and closed-source large language models prompted as critic models, we uncover significant weaknesses in current PRMs. These findings underscore the challenges inherent in process-level evaluation and highlight key directions for future research. We hope PRMBench can be a robust bench for advancing research on PRM evaluation and development.
Chunk-Distilled Language Modeling
Li, Yanhong, Livescu, Karen, Zhou, Jiawei
We introduce Chunk-Distilled Language Modeling (CD-LM), an approach to text generation that addresses two challenges in current large language models (LLMs): the inefficiency of token-level generation, and the difficulty of adapting to new data and knowledge. Our method combines deep network-based LLMs with a straightforward retrieval module, which allows the generation of multi-token text chunks at a single decoding step. Our retrieval framework enables flexible construction of model- or domain-specific datastores, either leveraging the internal knowledge of existing models, or incorporating expert insights from human-annotated corpora. This adaptability allows for enhanced control over the language model's distribution without necessitating additional training. We present the CD-LM formulation along with performance metrics demonstrating its ability to improve language model performance and efficiency across a diverse set of downstream tasks. Code and data will be made publicly available.
NetFlowGen: Leveraging Generative Pre-training for Network Traffic Dynamics
Zhou, Jiawei, Kim, Woojeong, Xu, Zhiying, Rush, Alexander M., Yu, Minlan
Understanding the traffic dynamics in networks is a core capability for automated systems to monitor and analyze networking behaviors, reducing expensive human efforts and economic risks through tasks such as traffic classification, congestion prediction, and attack detection. However, it is still challenging to accurately model network traffic with machine learning approaches in an efficient and broadly applicable manner. Task-specific models trained from scratch are used for different networking applications, which limits the efficiency of model development and generalization of model deployment. Furthermore, while networking data is abundant, high-quality task-specific labels are often insufficient for training individual models. Large-scale self-supervised learning on unlabeled data provides a natural pathway for tackling these challenges. We propose to pre-train a general-purpose machine learning model to capture traffic dynamics with only traffic data from NetFlow records, with the goal of fine-tuning for different downstream tasks with small amount of labels. Our presented NetFlowGen framework goes beyond a proof-of-concept for network traffic pre-training and addresses specific challenges such as unifying network feature representations, learning from large unlabeled traffic data volume, and testing on real downstream tasks in DDoS attack detection. Experiments demonstrate promising results of our pre-training framework on capturing traffic dynamics and adapting to different networking tasks.
Learning to Generate Research Idea with Dynamic Control
Li, Ruochen, Jing, Liqiang, Han, Chi, Zhou, Jiawei, Du, Xinya
The rapid advancements in large language models (LLMs) have demonstrated their potential to accelerate scientific discovery, particularly in automating the process of research ideation. LLM-based systems have shown promise in generating hypotheses and research ideas. However, current approaches predominantly rely on prompting-based pre-trained models, limiting their ability to optimize generated content effectively. Moreover, they also lack the capability to deal with the complex interdependence and inherent restrictions among novelty, feasibility, and effectiveness, which remains challenging due to the inherent trade-offs among these dimensions, such as the innovation-feasibility conflict. To address these limitations, we for the first time propose fine-tuning LLMs to be better idea proposers and introduce a novel framework that employs a two-stage approach combining Supervised Fine-Tuning (SFT) and controllable Reinforcement Learning (RL). In the SFT stage, the model learns foundational patterns from pairs of research papers and follow-up ideas. In the RL stage, multi-dimensional reward modeling, guided by fine-grained feedback, evaluates and optimizes the generated ideas across key metrics. Dimensional controllers enable dynamic adjustment of generation, while a sentence-level decoder ensures context-aware emphasis during inference. Our framework provides a balanced approach to research ideation, achieving high-quality outcomes by dynamically navigating the trade-offs among novelty, feasibility, and effectiveness.
From Uncertainty to Trust: Enhancing Reliability in Vision-Language Models with Uncertainty-Guided Dropout Decoding
Fang, Yixiong, Yang, Ziran, Chen, Zhaorun, Zhao, Zhuokai, Zhou, Jiawei
Large vision-language models (LVLMs) demonstrate remarkable capabilities in multimodal tasks but are prone to misinterpreting visual inputs, often resulting in hallucinations and unreliable outputs. To address these challenges, we propose Dropout Decoding, a novel inference-time approach that quantifies the uncertainty of visual tokens and selectively masks uncertain tokens to improve decoding. Our method measures the uncertainty of each visual token by projecting it onto the text space and decomposing it into aleatoric and epistemic components. Specifically, we focus on epistemic uncertainty, which captures perception-related errors more effectively. Inspired by dropout regularization, we introduce uncertainty-guided token dropout, which applies the dropout principle to input visual tokens instead of model parameters, and during inference rather than training. By aggregating predictions from an ensemble of masked decoding contexts, Dropout Decoding robustly mitigates errors arising from visual token misinterpretations. Evaluations on benchmarks including CHAIR, THRONE, and MMBench demonstrate that Dropout Decoding significantly reduces object hallucinations (OH) and enhances both reliability and quality of LVLM outputs across diverse visual contexts.
"It's a conversation, not a quiz": A Risk Taxonomy and Reflection Tool for LLM Adoption in Public Health
Zhou, Jiawei, Chen, Amy Z., Shah, Darshi, Reese, Laura Schwab, De Choudhury, Munmun
Recent breakthroughs in large language models (LLMs) have generated both interest and concern about their potential adoption as accessible information sources or communication tools across different domains. In public health -- where stakes are high and impacts extend across populations -- adopting LLMs poses unique challenges that require thorough evaluation. However, structured approaches for assessing potential risks in public health remain under-explored. To address this gap, we conducted focus groups with health professionals and health issue experiencers to unpack their concerns, situated across three distinct and critical public health issues that demand high-quality information: vaccines, opioid use disorder, and intimate partner violence. We synthesize participants' perspectives into a risk taxonomy, distinguishing and contextualizing the potential harms LLMs may introduce when positioned alongside traditional health communication. This taxonomy highlights four dimensions of risk in individual behaviors, human-centered care, information ecosystem, and technology accountability. For each dimension, we discuss specific risks and example reflection questions to help practitioners adopt a risk-reflexive approach. This work offers a shared vocabulary and reflection tool for experts in both computing and public health to collaboratively anticipate, evaluate, and mitigate risks in deciding when to employ LLM capabilities (or not) and how to mitigate harm when they are used.
MJ-Bench: Is Your Multimodal Reward Model Really a Good Judge for Text-to-Image Generation?
Chen, Zhaorun, Du, Yichao, Wen, Zichen, Zhou, Yiyang, Cui, Chenhang, Weng, Zhenzhen, Tu, Haoqin, Wang, Chaoqi, Tong, Zhengwei, Huang, Qinglan, Chen, Canyu, Ye, Qinghao, Zhu, Zhihong, Zhang, Yuqing, Zhou, Jiawei, Zhao, Zhuokai, Rafailov, Rafael, Finn, Chelsea, Yao, Huaxiu
While text-to-image models like DALLE-3 and Stable Diffusion are rapidly proliferating, they often encounter challenges such as hallucination, bias, and the production of unsafe, low-quality output. To effectively address these issues, it is crucial to align these models with desired behaviors based on feedback from a multimodal judge. Despite their significance, current multimodal judges frequently undergo inadequate evaluation of their capabilities and limitations, potentially leading to misalignment and unsafe fine-tuning outcomes. To address this issue, we introduce MJ-Bench, a novel benchmark which incorporates a comprehensive preference dataset to evaluate multimodal judges in providing feedback for image generation models across four key perspectives: alignment, safety, image quality, and bias. Specifically, we evaluate a large variety of multimodal judges including smaller-sized CLIP-based scoring models, open-source VLMs (e.g. LLaVA family), and close-source VLMs (e.g. GPT-4o, Claude 3) on each decomposed subcategory of our preference dataset. Experiments reveal that close-source VLMs generally provide better feedback, with GPT-4o outperforming other judges in average. Compared with open-source VLMs, smaller-sized scoring models can provide better feedback regarding text-image alignment and image quality, while VLMs provide more accurate feedback regarding safety and generation bias due to their stronger reasoning capabilities. Further studies in feedback scale reveal that VLM judges can generally provide more accurate and stable feedback in natural language (Likert-scale) than numerical scales. Notably, human evaluations on end-to-end fine-tuned models using separate feedback from these multimodal judges provide similar conclusions, further confirming the effectiveness of MJ-Bench. All data, code, models are available at https://huggingface.co/MJ-Bench.
HALC: Object Hallucination Reduction via Adaptive Focal-Contrast Decoding
Chen, Zhaorun, Zhao, Zhuokai, Luo, Hongyin, Yao, Huaxiu, Li, Bo, Zhou, Jiawei
While large vision-language models (LVLMs) have demonstrated impressive capabilities in interpreting multi-modal contexts, they invariably suffer from object hallucinations (OH). We introduce HALC, a novel decoding algorithm designed to mitigate OH in LVLMs. HALC leverages distinct fine-grained optimal visual information in vision-language tasks and operates on both local and global contexts simultaneously. Specifically, HALC integrates a robust auto-focal grounding mechanism (locally) to correct hallucinated tokens on the fly, and a specialized beam search algorithm (globally) to significantly reduce OH while preserving text generation quality. Additionally, HALC can be integrated into any LVLMs as a plug-and-play module without extra training. Extensive experimental studies demonstrate the effectiveness of HALC in reducing OH, outperforming state-of-the-arts across four benchmarks.