Goto

Collaborating Authors

 Zhou, Jiachen


3D-Mem: 3D Scene Memory for Embodied Exploration and Reasoning

arXiv.org Artificial Intelligence

Constructing compact and informative 3D scene representations is essential for effective embodied exploration and reasoning, especially in complex environments over extended periods. Existing representations, such as object-centric 3D scene graphs, oversimplify spatial relationships by modeling scenes as isolated objects with restrictive textual relationships, making it difficult to address queries requiring nuanced spatial understanding. Moreover, these representations lack natural mechanisms for active exploration and memory management, hindering their application to lifelong autonomy. In this work, we propose 3D-Mem, a novel 3D scene memory framework for embodied agents. 3D-Mem employs informative multi-view images, termed Memory Snapshots, to represent the scene and capture rich visual information of explored regions. It further integrates frontier-based exploration by introducing Frontier Snapshots-glimpses of unexplored areas-enabling agents to make informed decisions by considering both known and potential new information. To support lifelong memory in active exploration settings, we present an incremental construction pipeline for 3D-Mem, as well as a memory retrieval technique for memory management. Experimental results on three benchmarks demonstrate that 3D-Mem significantly enhances agents' exploration and reasoning capabilities in 3D environments, highlighting its potential for advancing applications in embodied AI.


A Survey on Physical Adversarial Attacks against Face Recognition Systems

arXiv.org Artificial Intelligence

As Face Recognition (FR) technology becomes increasingly prevalent in finance, the military, public safety, and everyday life, security concerns have grown substantially. Physical adversarial attacks targeting FR systems in real-world settings have attracted considerable research interest due to their practicality and the severe threats they pose. However, a systematic overview focused on physical adversarial attacks against FR systems is still lacking, hindering an in-depth exploration of the challenges and future directions in this field. In this paper, we bridge this gap by comprehensively collecting and analyzing physical adversarial attack methods targeting FR systems. Specifically, we first investigate the key challenges of physical attacks on FR systems. We then categorize existing physical attacks into three categories based on the physical medium used and summarize how the research in each category has evolved to address these challenges. Furthermore, we review current defense strategies and discuss potential future research directions. Our goal is to provide a fresh, comprehensive, and deep understanding of physical adversarial attacks against FR systems, thereby inspiring relevant research in this area.


Dormant: Defending against Pose-driven Human Image Animation

arXiv.org Artificial Intelligence

Pose-driven human image animation has achieved tremendous progress, enabling the generation of vivid and realistic human videos from just one single photo. However, it conversely exacerbates the risk of image misuse, as attackers may use one available image to create videos involving politics, violence and other illegal content. To counter this threat, we propose Dormant, a novel protection approach tailored to defend against pose-driven human image animation techniques. Dormant applies protective perturbation to one human image, preserving the visual similarity to the original but resulting in poor-quality video generation. The protective perturbation is optimized to induce misextraction of appearance features from the image and create incoherence among the generated video frames. Our extensive evaluation across 8 animation methods and 4 datasets demonstrates the superiority of Dormant over 6 baseline protection methods, leading to misaligned identities, visual distortions, noticeable artifacts, and inconsistent frames in the generated videos. Moreover, Dormant shows effectiveness on 6 real-world commercial services, even with fully black-box access.


MEA-Defender: A Robust Watermark against Model Extraction Attack

arXiv.org Artificial Intelligence

Recently, numerous highly-valuable Deep Neural Networks (DNNs) have been trained using deep learning algorithms. To protect the Intellectual Property (IP) of the original owners over such DNN models, backdoor-based watermarks have been extensively studied. However, most of such watermarks fail upon model extraction attack, which utilizes input samples to query the target model and obtains the corresponding outputs, thus training a substitute model using such input-output pairs. In this paper, we propose a novel watermark to protect IP of DNN models against model extraction, named MEA-Defender. In particular, we obtain the watermark by combining two samples from two source classes in the input domain and design a watermark loss function that makes the output domain of the watermark within that of the main task samples. Since both the input domain and the output domain of our watermark are indispensable parts of those of the main task samples, the watermark will be extracted into the stolen model along with the main task during model extraction. We conduct extensive experiments on four model extraction attacks, using five datasets and six models trained based on supervised learning and self-supervised learning algorithms. The experimental results demonstrate that MEA-Defender is highly robust against different model extraction attacks, and various watermark removal/detection approaches.


DataElixir: Purifying Poisoned Dataset to Mitigate Backdoor Attacks via Diffusion Models

arXiv.org Artificial Intelligence

Dataset sanitization is a widely adopted proactive defense against poisoning-based backdoor attacks, aimed at filtering out and removing poisoned samples from training datasets. However, existing methods have shown limited efficacy in countering the ever-evolving trigger functions, and often leading to considerable degradation of benign accuracy. In this paper, we propose DataElixir, a novel sanitization approach tailored to purify poisoned datasets. We leverage diffusion models to eliminate trigger features and restore benign features, thereby turning the poisoned samples into benign ones. Specifically, with multiple iterations of the forward and reverse process, we extract intermediary images and their predicted labels for each sample in the original dataset. Then, we identify anomalous samples in terms of the presence of label transition of the intermediary images, detect the target label by quantifying distribution discrepancy, select their purified images considering pixel and feature distance, and determine their ground-truth labels by training a benign model. Experiments conducted on 9 popular attacks demonstrates that DataElixir effectively mitigates various complex attacks while exerting minimal impact on benign accuracy, surpassing the performance of baseline defense methods.


aUToLights: A Robust Multi-Camera Traffic Light Detection and Tracking System

arXiv.org Artificial Intelligence

Following four successful years in the SAE AutoDrive Challenge Series I, the University of Toronto is participating in the Series II competition to develop a Level 4 autonomous passenger vehicle capable of handling various urban driving scenarios by 2025. Accurate detection of traffic lights and correct identification of their states is essential for safe autonomous operation in cities. Herein, we describe our recently-redesigned traffic light perception system for autonomous vehicles like the University of Toronto's self-driving car, Artemis. Similar to most traffic light perception systems, we rely primarily on camera-based object detectors. We deploy the YOLOv5 detector for bounding box regression and traffic light classification across multiple cameras and fuse the observations. To improve robustness, we incorporate priors from high-definition semantic maps and perform state filtering using hidden Markov models. We demonstrate a multi-camera, real time-capable traffic light perception pipeline that handles complex situations including multiple visible intersections, traffic light variations, temporary occlusion, and flashing light states. To validate our system, we collected and annotated a varied dataset incorporating flashing states and a range of occlusion types. Our results show superior performance in challenging real-world scenarios compared to single-frame, single-camera object detection.