Goto

Collaborating Authors

 Zhou, Hao


MobA: A Two-Level Agent System for Efficient Mobile Task Automation

arXiv.org Artificial Intelligence

Current mobile assistants are limited by dependence on system APIs or struggle with complex user instructions and diverse interfaces due to restricted comprehension and decision-making abilities. To address these challenges, we propose MobA, a novel Mobile phone Agent powered by multimodal large language models that enhances comprehension and planning capabilities through a sophisticated two-level agent architecture. The high-level Global Agent (GA) is responsible for understanding user commands, tracking history memories, and planning tasks. The low-level Local Agent (LA) predicts detailed actions in the form of function calls, guided by sub-tasks and memory from the GA. Integrating a Reflection Module allows for efficient task completion and enables the system to handle previously unseen complex tasks. MobA demonstrates significant improvements in task execution efficiency and completion rate in real-life evaluations, underscoring the potential of MLLM-empowered mobile assistants.


Large Language Model Inference Acceleration: A Comprehensive Hardware Perspective

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have demonstrated remarkable capabilities across various fields, from natural language understanding to text generation. Compared to non-generative LLMs like BERT and DeBERTa, generative LLMs like GPT series and Llama series are currently the main focus due to their superior algorithmic performance. The advancements in generative LLMs are closely intertwined with the development of hardware capabilities. Various hardware platforms exhibit distinct hardware characteristics, which can help improve LLM inference performance. Therefore, this paper comprehensively surveys efficient generative LLM inference on different hardware platforms. First, we provide an overview of the algorithm architecture of mainstream generative LLMs and delve into the inference process. Then, we summarize different optimization methods for different platforms such as CPU, GPU, FPGA, ASIC, and PIM/NDP, and provide inference results for generative LLMs. Furthermore, we perform a qualitative and quantitative comparison of inference performance with batch sizes 1 and 8 on different hardware platforms by considering hardware power consumption, absolute inference speed (tokens/s), and energy efficiency (tokens/J). We compare the performance of the same optimization methods across different hardware platforms, the performance across different hardware platforms, and the performance of different methods on the same hardware platform. This provides a systematic and comprehensive summary of existing inference acceleration work by integrating software optimization methods and hardware platforms, which can point to the future trends and potential developments of generative LLMs and hardware technology for edge-side scenarios.


Decision Focused Causal Learning for Direct Counterfactual Marketing Optimization

arXiv.org Artificial Intelligence

Marketing optimization plays an important role to enhance user engagement in online Internet platforms. Existing studies usually formulate this problem as a budget allocation problem and solve it by utilizing two fully decoupled stages, i.e., machine learning (ML) and operation research (OR). However, the learning objective in ML does not take account of the downstream optimization task in OR, which causes that the prediction accuracy in ML may be not positively related to the decision quality. Decision Focused Learning (DFL) integrates ML and OR into an end-to-end framework, which takes the objective of the downstream task as the decision loss function and guarantees the consistency of the optimization direction between ML and OR. However, deploying DFL in marketing is non-trivial due to multiple technological challenges. Firstly, the budget allocation problem in marketing is a 0-1 integer stochastic programming problem and the budget is uncertain and fluctuates a lot in real-world settings, which is beyond the general problem background in DFL. Secondly, the counterfactual in marketing causes that the decision loss cannot be directly computed and the optimal solution can never be obtained, both of which disable the common gradient-estimation approaches in DFL. Thirdly, the OR solver is called frequently to compute the decision loss during model training in DFL, which produces huge computational cost and cannot support large-scale training data. In this paper, we propose a decision focused causal learning framework (DFCL) for direct counterfactual marketing optimization, which overcomes the above technological challenges. Both offline experiments and online A/B testing demonstrate the effectiveness of DFCL over the state-of-the-art methods. Currently, DFCL has been deployed in several marketing scenarios in Meituan, one of the largest online food delivery platform in the world.


Safety-Critical Control with Uncertainty Quantification using Adaptive Conformal Prediction

arXiv.org Artificial Intelligence

Safety assurance is critical in the planning and control of robotic systems. For robots operating in the real world, the safety-critical design often needs to explicitly address uncertainties and the pre-computed guarantees often rely on the assumption of the particular distribution of the uncertainty. However, it is difficult to characterize the actual uncertainty distribution beforehand and thus the established safety guarantee may be violated due to possible distribution mismatch. In this paper, we propose a novel safe control framework that provides a high-probability safety guarantee for stochastic dynamical systems following unknown distributions of motion noise. Specifically, this framework adopts adaptive conformal prediction to dynamically quantify the prediction uncertainty from online observations and combines that with the probabilistic extension of the control barrier functions (CBFs) to characterize the uncertainty-aware control constraints. By integrating the constraints in the model predictive control scheme, it allows robots to adaptively capture the true prediction uncertainty online in a distribution-free setting and enjoys formally provable high-probability safety assurance. Simulation results on multi-robot systems with stochastic single-integrator dynamics and unicycle dynamics are provided to demonstrate the effectiveness of our framework.


SGSM: A Foundation-model-like Semi-generalist Sensing Model

arXiv.org Artificial Intelligence

Intelligent sensing systems have shown remarkable performance on many environmental perception (e.g., liquid recognition [1], soil moisture estimation [2], temperature monitoring [3]) and human activity (e.g., fall detection [4], vital sign estimation [5], location tracking [6]) tasks, becoming the core component of smart physical-related services, such as smart city and smart manufacturing. However, the current cost of designing intelligent sensing systems is relatively high since the models were designed to solve specific tasks with expensive expert knowledge [7] or a substantial amount of domain-specific data [8], one at a time. Foundation models [9] - the latest generation of artificial intelligence (AI) models - are intuitively used to generalize the model for numerous downstream tasks, which are trained on large multimodal datasets. They can solve entirely new tasks which the models are never explicitly trained for. Although the foundation models paradigm perform well in computer vision or natural language processing area, applying them in the intelligent sensing area is still challenging for two reasons. First, it is difficult to generate or access massive and diverse sensing datasets. Massive high-quality data is crucial for foundation model applications, such as computer vision [10] and natural language processing [9]. However, this requirement is often unmet in the sensing field.


VideoPrism: A Foundational Visual Encoder for Video Understanding

arXiv.org Artificial Intelligence

We introduce VideoPrism, a general-purpose video encoder that tackles diverse video understanding tasks with a single frozen model. We pretrain VideoPrism on a heterogeneous corpus containing 36M high-quality video-caption pairs and 582M video clips with noisy parallel text (e.g., ASR transcripts). The pretraining approach improves upon masked autoencoding by global-local distillation of semantic video embeddings and a token shuffling scheme, enabling VideoPrism to focus primarily on the video modality while leveraging the invaluable text associated with videos. We extensively test VideoPrism on four broad groups of video understanding tasks, from web video question answering to CV for science, achieving state-of-the-art performance on 31 out of 33 video understanding benchmarks.


Learning Multi-view Molecular Representations with Structured and Unstructured Knowledge

arXiv.org Artificial Intelligence

Capturing molecular knowledge with representation learning approaches holds significant potential in vast scientific fields such as chemistry and life science. An effective and generalizable molecular representation is expected to capture the consensus and complementary molecular expertise from diverse views and perspectives. However, existing works fall short in learning multi-view molecular representations, due to challenges in explicitly incorporating view information and handling molecular knowledge from heterogeneous sources. To address these issues, we present MV-Mol, a molecular representation learning model that harvests multi-view molecular expertise from chemical structures, unstructured knowledge from biomedical texts, and structured knowledge from knowledge graphs. We utilize text prompts to model view information and design a fusion architecture to extract view-based molecular representations. We develop a two-stage pre-training procedure, exploiting heterogeneous data of varying quality and quantity. Through extensive experiments, we show that MV-Mol provides improved representations that substantially benefit molecular property prediction. Additionally, MV-Mol exhibits state-of-the-art performance in multi-modal comprehension of molecular structures and texts. Code and data are available at https://github.com/PharMolix/OpenBioMed.


ESM All-Atom: Multi-scale Protein Language Model for Unified Molecular Modeling

arXiv.org Artificial Intelligence

Protein language models have demonstrated significant potential in the field of protein engineering. However, current protein language models primarily operate at the residue scale, which limits their ability to provide information at the atom level. This limitation prevents us from fully exploiting the capabilities of protein language models for applications involving both proteins and small molecules. In this paper, we propose ESM-AA (ESM All-Atom), a novel approach that enables atom-scale and residue-scale unified molecular modeling. ESM-AA achieves this by pre-training on multi-scale code-switch protein sequences and utilizing a multi-scale position encoding to capture relationships among residues and atoms. Experimental results indicate that ESM-AA surpasses previous methods in protein-molecule tasks, demonstrating the full utilization of protein language models. Further investigations reveal that through unified molecular modeling, ESM-AA not only gains molecular knowledge but also retains its understanding of proteins. The source codes of ESM-AA are publicly released at https://github.com/zhengkangjie/ESM-AA.


AnyFit: Controllable Virtual Try-on for Any Combination of Attire Across Any Scenario

arXiv.org Artificial Intelligence

While image-based virtual try-on has made significant strides, emerging approaches still fall short of delivering high-fidelity and robust fitting images across various scenarios, as their models suffer from issues of ill-fitted garment styles and quality degrading during the training process, not to mention the lack of support for various combinations of attire. Therefore, we first propose a lightweight, scalable, operator known as Hydra Block for attire combinations. This is achieved through a parallel attention mechanism that facilitates the feature injection of multiple garments from conditionally encoded branches into the main network. Secondly, to significantly enhance the model's robustness and expressiveness in real-world scenarios, we evolve its potential across diverse settings by synthesizing the residuals of multiple models, as well as implementing a mask region boost strategy to overcome the instability caused by information leakage in existing models. Equipped with the above design, AnyFit surpasses all baselines on high-resolution benchmarks and real-world data by a large gap, excelling in producing well-fitting garments replete with photorealistic and rich details. Furthermore, AnyFit's impressive performance on high-fidelity virtual try-ons in any scenario from any image, paves a new path for future research within the fashion community.


MolCRAFT: Structure-Based Drug Design in Continuous Parameter Space

arXiv.org Artificial Intelligence

Generative models for structure-based drug design (SBDD) have shown promising results in recent years. Existing works mainly focus on how to generate molecules with higher binding affinity, ignoring the feasibility prerequisites for generated 3D poses and resulting in false positives. We conduct thorough studies on key factors of ill-conformational problems when applying autoregressive methods and diffusion to SBDD, including mode collapse and hybrid continuous-discrete space. In this paper, we introduce MolCRAFT, the first SBDD model that operates in the continuous parameter space, together with a novel noise reduced sampling strategy. Empirical results show that our model consistently achieves superior performance in binding affinity with more stable 3D structure, demonstrating our ability to accurately model interatomic interactions. To our best knowledge, MolCRAFT is the first to achieve reference-level Vina Scores (-6.59 kcal/mol) with comparable molecular size, outperforming other strong baselines by a wide margin (-0.84 kcal/mol). Code is available at https://github.com/AlgoMole/MolCRAFT.