Zhou, Guangyou
A Diversity-Enhanced Knowledge Distillation Model for Practical Math Word Problem Solving
Zhang, Yi, Zhou, Guangyou, Xie, Zhiwen, Ma, Jinjin, Huang, Jimmy Xiangji
Math Word Problem (MWP) solving is a critical task in natural language processing, has garnered significant research interest in recent years. Various recent studies heavily rely on Seq2Seq models and their extensions (e.g., Seq2Tree and Graph2Tree) to generate mathematical equations. While effective, these models struggle to generate diverse but counterpart solution equations, limiting their generalization across various math problem scenarios. In this paper, we introduce a novel Diversity-enhanced Knowledge Distillation (DivKD) model for practical MWP solving. Our approach proposes an adaptive diversity distillation method, in which a student model learns diverse equations by selectively transferring high-quality knowledge from a teacher model. Additionally, we design a diversity prior-enhanced student model to better capture the diversity distribution of equations by incorporating a conditional variational auto-encoder. Extensive experiments on {four} MWP benchmark datasets demonstrate that our approach achieves higher answer accuracy than strong baselines while maintaining high efficiency for practical applications.
One Subgraph for All: Efficient Reasoning on Opening Subgraphs for Inductive Knowledge Graph Completion
Xie, Zhiwen, Zhang, Yi, Zhou, Guangyou, Liu, Jin, Tu, Xinhui, Huang, Jimmy Xiangji
Knowledge Graph Completion (KGC) has garnered massive research interest recently, and most existing methods are designed following a transductive setting where all entities are observed during training. Despite the great progress on the transductive KGC, these methods struggle to conduct reasoning on emerging KGs involving unseen entities. Thus, inductive KGC, which aims to deduce missing links among unseen entities, has become a new trend. Many existing studies transform inductive KGC as a graph classification problem by extracting enclosing subgraphs surrounding each candidate triple. Unfortunately, they still face certain challenges, such as the expensive time consumption caused by the repeat extraction of enclosing subgraphs, and the deficiency of entity-independent feature learning. To address these issues, we propose a global-local anchor representation (GLAR) learning method for inductive KGC. Unlike previous methods that utilize enclosing subgraphs, we extract a shared opening subgraph for all candidates and perform reasoning on it, enabling the model to perform reasoning more efficiently. Moreover, we design some transferable global and local anchors to learn rich entity-independent features for emerging entities. Finally, a global-local graph reasoning model is applied on the opening subgraph to rank all candidates. Extensive experiments show that our GLAR outperforms most existing state-of-the-art methods.
A Subspace Learning Framework for Cross-Lingual Sentiment Classification with Partial Parallel Data
Zhou, Guangyou (Central China Normal University) | He, Tingting (Central China Normal University) | Zhao, Jun (National Laboratory of Pattern Recognition, CASIA) | Wu, Wensheng (University of Southern California)
Cross-lingual sentiment classification aims to automatically predict sentiment polarity (e.g., positive or negative) of data in a label-scarce target language by exploiting labeled data from a label-rich language. The fundamental challenge of cross-lingual learning stems from a lack of overlap between the feature spaces of the source language data and that of the target language data. To address this challenge, previous work in the literature mainly relies on the large amount of bilingual parallel corpora to bridge the language gap. In many real applications, however, it is often the case that we have some partial parallel data but it is an expensive and time-consuming job to acquire large amount of parallel data on different languages. In this paper, we propose a novel subspace learning framework by leveraging the partial parallel data for cross-lingual sentiment classification. The proposed approach is achieved by jointly learning the document-aligned review data and un-aligned data from the source language and the target language via a non-negative matrix factorization framework. We conduct a set of experiments with cross-lingual sentiment classification tasks on multilingual Amazon product reviews. Our experimental results demonstrate the efficacy of the proposed cross-lingual approach.