Goto

Collaborating Authors

 Zhou, Ganbin


Extracting Variable-Depth Logical Document Hierarchy from Long Documents: Method, Evaluation, and Application

arXiv.org Artificial Intelligence

In this paper, we study the problem of extracting variable-depth "logical document hierarchy" from long documents, namely organizing the recognized "physical document objects" into hierarchical structures. The discovery of logical document hierarchy is the vital step to support many downstream applications. However, long documents, containing hundreds or even thousands of pages and variable-depth hierarchy, challenge the existing methods. To address these challenges, we develop a framework, namely Hierarchy Extraction from Long Document (HELD), where we "sequentially" insert each physical object at the proper on of the current tree. Determining whether each possible position is proper or not can be formulated as a binary classification problem. To further improve its effectiveness and efficiency, we study the design variants in HELD, including traversal orders of the insertion positions, heading extraction explicitly or implicitly, tolerance to insertion errors in predecessor steps, and so on. The empirical experiments based on thousands of long documents from Chinese, English financial market and English scientific publication show that the HELD model with the "root-to-leaf" traversal order and explicit heading extraction is the best choice to achieve the tradeoff between effectiveness and efficiency with the accuracy of 0.9726, 0.7291 and 0.9578 in Chinese financial, English financial and arXiv datasets, respectively. Finally, we show that logical document hierarchy can be employed to significantly improve the performance of the downstream passage retrieval task. In summary, we conduct a systematic study on this task in terms of methods, evaluations, and applications.


Hierarchical Neural Network for Extracting Knowledgeable Snippets and Documents

arXiv.org Artificial Intelligence

In this study, we focus on extracting knowledgeable snippets and annotating knowledgeable documents from Web corpus, consisting of the documents from social media and We-media. Informally, knowledgeable snippets refer to the text describing concepts, properties of entities, or relations among entities, while knowledgeable documents are the ones with enough knowledgeable snippets. These knowledgeable snippets and documents could be helpful in multiple applications, such as knowledge base construction and knowledge-oriented service. Previous studies extracted the knowledgeable snippets using the pattern-based method. Here, we propose the semantic-based method for this task. Specifically, a CNN based model is developed to extract knowledgeable snippets and annotate knowledgeable documents simultaneously. Additionally, a "low-level sharing, high-level splitting" structure of CNN is designed to handle the documents from different content domains. Compared with building multiple domain-specific CNNs, this joint model not only critically saves the training time, but also improves the prediction accuracy visibly. The superiority of the proposed method is demonstrated in a real dataset from Wechat public platform.


Elastic Responding Machine for Dialog Generation with Dynamically Mechanism Selecting

AAAI Conferences

Neural models aiming at generating meaningful and diverse response is attracting increasing attention over recent years. For a given post, the conventional encoder-decoder models tend to learn high-frequency but trivial responses, or are difficult to determine which speaking styles are suitable to generate responses. To address this issue, we propose the elastic responding machine (ERM), which is based on a proposed encoder-diverter-filter-decoder framework. ERM models the multiple responding mechanisms to not only generate acceptable responses for a given post but also improve the diversity of responses. Here, the mechanisms could be regraded as some latent variables, and for a given post different responses may be generated by different mechanisms. The experiments demonstrate the quality and diversity of the generated responses, intuitively show how the learned model controls response mechanism when responding, and reveal some underlying relationship between mechanism and language style.


Tree-Structured Neural Machine for Linguistics-Aware Sentence Generation

AAAI Conferences

Different from other sequential data, sentences in natural language are structured by linguistic grammars. Previous generative conversational models with chain-structured decoder ignore this structure in human language and might generate plausible responses with less satisfactory relevance and fluency. In this study, we aim to incorporate the results from linguistic analysis into the process of sentence generation for high-quality conversation generation. Specifically, we use a dependency parser to transform each response sentence into a dependency tree and construct a training corpus of sentence-tree pairs. A tree-structured decoder is developed to learn the mapping from a sentence to its tree, where different types of hidden states are used to depict the local dependencies from an internal tree node to its children. For training acceleration, we propose a tree canonicalization method, which transforms trees into equivalent ternary trees. Then, with a proposed tree-structured search method, the model is able to generate the most probable responses in the form of dependency trees, which are finally flattened into sequences as the system output. Experimental results demonstrate that the proposed X2Tree framework outperforms baseline methods over 11.15% increase of acceptance ratio.


Tree-Structured Neural Machine for Linguistics-Aware Sentence Generation

arXiv.org Artificial Intelligence

Different from other sequential data, sentences in natural language are structured by linguistic grammars. Previous generative conversational models with chain-structured decoder ignore this structure in human language and might generate plausible responses with less satisfactory relevance and fluency. In this study, we aim to incorporate the results from linguistic analysis into the process of sentence generation for high-quality conversation generation. Specifically, we use a dependency parser to transform each response sentence into a dependency tree and construct a training corpus of sentence-tree pairs. A tree-structured decoder is developed to learn the mapping from a sentence to its tree, where different types of hidden states are used to depict the local dependencies from an internal tree node to its children. For training acceleration, we propose a tree canonicalization method, which transforms trees into equivalent ternary trees. Then, with a proposed tree-structured search method, the model is able to generate the most probable responses in the form of dependency trees, which are finally flattened into sequences as the system output. Experimental results demonstrate that the proposed X2Tree framework outperforms baseline methods over 11.15% increase of acceptance ratio.


Mechanism-Aware Neural Machine for Dialogue Response Generation

AAAI Conferences

To the same utterance, people's responses in everyday dialogue may be diverse largely in terms of content semantics, speaking styles, communication intentions and so on. Previous generative conversational models ignore these 1-to-n relationships between a post to its diverse responses, and tend to return high-frequency but meaningless responses. In this study we propose a mechanism-aware neural machine for dialogue response generation. It assumes that there exists some latent responding mechanisms, each of which can generate different responses for a single input post. With this assumption we model different responding mechanisms as latent embeddings, and develop a encoder-diverter-decoder framework to train its modules in an end-to-end fashion. With the learned latent mechanisms, for the first time these decomposed modules can be used to encode the input into mechanism-aware context, and decode the responses with the controlled generation styles and topics. Finally, the experiments with human judgements, intuitive examples, detailed discussions demonstrate the quality and diversity of the generated responses with 9.80% increase of acceptable ratio over the best of six baseline methods.