Zhou, Fengtao
Distilled Prompt Learning for Incomplete Multimodal Survival Prediction
Xu, Yingxue, Zhou, Fengtao, Zhao, Chenyu, Wang, Yihui, Yang, Can, Chen, Hao
The integration of multimodal data including pathology images and gene profiles is widely applied in precise survival prediction. Despite recent advances in multimodal survival models, collecting complete modalities for multimodal fusion still poses a significant challenge, hindering their application in clinical settings. Current approaches tackling incomplete modalities often fall short, as they typically compensate for only a limited part of the knowledge of missing modalities. To address this issue, we propose a Distilled Prompt Learning framework (DisPro) to utilize the strong robustness of Large Language Models (LLMs) to missing modalities, which employs two-stage prompting for compensation of comprehensive information for missing modalities. In the first stage, Unimodal Prompting (UniPro) distills the knowledge distribution of each modality, preparing for supplementing modality-specific knowledge of the missing modality in the subsequent stage. In the second stage, Multimodal Prompting (MultiPro) leverages available modalities as prompts for LLMs to infer the missing modality, which provides modality-common information. Simultaneously, the unimodal knowledge acquired in the first stage is injected into multimodal inference to compensate for the modality-specific knowledge of the missing modality. Extensive experiments covering various missing scenarios demonstrated the superiority of the proposed method. The code is available at https://github.com/Innse/DisPro.
Multimodal Data Integration for Precision Oncology: Challenges and Future Directions
Zhou, Huajun, Zhou, Fengtao, Zhao, Chenyu, Xu, Yingxue, Luo, Luyang, Chen, Hao
The essence of precision oncology lies in its commitment to tailor targeted treatments and care measures to each patient based on the individual characteristics of the tumor. The inherent heterogeneity of tumors necessitates gathering information from diverse data sources to provide valuable insights from various perspectives, fostering a holistic comprehension of the tumor. Over the past decade, multimodal data integration technology for precision oncology has made significant strides, showcasing remarkable progress in understanding the intricate details within heterogeneous data modalities. These strides have exhibited tremendous potential for improving clinical decision-making and model interpretation, contributing to the advancement of cancer care and treatment. Given the rapid progress that has been achieved, we provide a comprehensive overview of about 300 papers detailing cutting-edge multimodal data integration techniques in precision oncology. In addition, we conclude the primary clinical applications that have reaped significant benefits, including early assessment, diagnosis, prognosis, and biomarker discovery. Finally, derived from the findings of this survey, we present an in-depth analysis that explores the pivotal challenges and reveals essential pathways for future research in the field of multimodal data integration for precision oncology.
Multiple Instance Learning Framework with Masked Hard Instance Mining for Whole Slide Image Classification
Tang, Wenhao, Huang, Sheng, Zhang, Xiaoxian, Zhou, Fengtao, Zhang, Yi, Liu, Bo
The whole slide image (WSI) classification is often formulated as a multiple instance learning (MIL) problem. Since the positive tissue is only a small fraction of the gigapixel WSI, existing MIL methods intuitively focus on identifying salient instances via attention mechanisms. However, this leads to a bias towards easy-to-classify instances while neglecting hard-to-classify instances. Some literature has revealed that hard examples are beneficial for modeling a discriminative boundary accurately. By applying such an idea at the instance level, we elaborate a novel MIL framework with masked hard instance mining (MHIM-MIL), which uses a Siamese structure (Teacher-Student) with a consistency constraint to explore the potential hard instances. With several instance masking strategies based on attention scores, MHIM-MIL employs a momentum teacher to implicitly mine hard instances for training the student model, which can be any attention-based MIL model. This counter-intuitive strategy essentially enables the student to learn a better discriminating boundary. Moreover, the student is used to update the teacher with an exponential moving average (EMA), which in turn identifies new hard instances for subsequent training iterations and stabilizes the optimization. Experimental results on the CAMELYON-16 and TCGA Lung Cancer datasets demonstrate that MHIM-MIL outperforms other latest methods in terms of performance and training cost. The code is available at: https://github.com/DearCaat/MHIM-MIL.
Cross-Modal Translation and Alignment for Survival Analysis
Zhou, Fengtao, Chen, Hao
With the rapid advances in high-throughput sequencing technologies, the focus of survival analysis has shifted from examining clinical indicators to incorporating genomic profiles with pathological images. However, existing methods either directly adopt a straightforward fusion of pathological features and genomic profiles for survival prediction, or take genomic profiles as guidance to integrate the features of pathological images. The former would overlook intrinsic cross-modal correlations. The latter would discard pathological information irrelevant to gene expression. To address these issues, we present a Cross-Modal Translation and Alignment (CMTA) framework to explore the intrinsic cross-modal correlations and transfer potential complementary information. Specifically, we construct two parallel encoder-decoder structures for multi-modal data to integrate intra-modal information and generate cross-modal representation. Taking the generated cross-modal representation to enhance and recalibrate intra-modal representation can significantly improve its discrimination for comprehensive survival analysis. To explore the intrinsic crossmodal correlations, we further design a cross-modal attention module as the information bridge between different modalities to perform cross-modal interactions and transfer complementary information. Our extensive experiments on five public TCGA datasets demonstrate that our proposed framework outperforms the state-of-the-art methods.